
How to Program

Tony Jenkins and Graham Hardman

 Using Java

How to Program
Using Java

Tony Jenkins
Graham Hardman

Illustrations by Christine Jopling

© Tony Jenkins and Graham Hardman 2004

All rights reserved. No reproduction, copy or transmission of this
publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted
save with written permission or in accordance with the provisions of the
Copyright, Designs and Patents Act 1988, or under the terms of any licence
permitting limited copying issued by the Copyright Licensing Agency, 90
Tottenham Court Road, London W1T 4LP.

Any person who does any unauthorised act in relation to this publication
may be liable to criminal prosecution and civil claims for damages.

The authors have asserted their rights to be identified
as the authors of this work in accordance with the Copyright,
Designs and Patents Act 1988.

First published 2004 by
PALGRAVE MACMILLAN
Houndmills, Basingstoke, Hampshire RG21 6XS and
175 Fifth Avenue, New York, N.Y. 10010
Companies and representatives throughout the world

PALGRAVE MACMILLAN is the global academic imprint of the Palgrave
Macmillan division of St. Martin’s Press, LLC and of Palgrave Macmillan Ltd.
Macmillan® is a registered trademark in the United States, United Kingdom
and other countries. Palgrave is a registered trademark in
the European Union and other countries.

ISBN 1–4039–1223–8

This book is printed on paper suitable for recycling and made from fully
managed and sustained forest sources.

A catalogue record for this book is available from the British Library.

10 9 8 7 6 5 4 3 2 1
13 12 11 10 09 08 07 06 05 04

Printed and bound in China

This book is respectfully dedicated to all SysAdmins.
Now can we have some more disk quota, please?

iv

Using this book
Deciding what to read
This book is meant to be read by someone who is learning to program. It is not
meant to be a reference. The first chapter explains what’s in each of the follow-
ing chapters in some detail, but briefly:

Chapter 0 – What this book is p. 1
… tells you in much more detail what this book is, and why it is like that.

Chapter 1 – Programming p. 11
… explains what programming is, and why you might want to be able to do it.

Chapter 2 – The mechanics p. 20
… describes the details of getting a computer to run your program.

Chapter 3 – Before you start p. 29
… explains what you are going to need and also considers why many people
find learning to program difficult.

Chapter 4 – Objects. The building block p. 39
… has a close look at what precisely the basic component of an object-oriented
computer program – an “object” – is.

Chapter 5 – A word on analysis and design p. 52
… puts programming into context by looking briefly at the processes of
analysing a problem and designing a solution.

Chapter 6 – A first look p. 63
… provides a first look at Java by developing a simple Java object.

Chapter 7 – Programming (don’t panic!) p. 74
… shows why programming requires a structured, controlled approach, and
why good programming style is so important.

Chapter 8 – The basics p. 86
… introduces the first Java in the book – values, variables, assignments, and
simple output.

Chapter 9 – Input p. 112
… describes how to accept input values from the user.

Chapter 10 – A word on testing p. 124
… breaks off briefly to show why it is so important that all programs are tested
thoroughly and methodically, and to present some ways of testing simple
programs.

Chapter 11 – A first class p. 135
… shows how to create a class of objects in Java.

Chapter 12 – Classes and objects p. 152
… and shows how to use those classes in programs.

Chapter 13 – Get your hands off my data! p. 167
… describes two basic functions that are carried out on objects – setting their
interesting values and finding out what these values are.

Using this book v

Chapter 14 – Making things happen. Sometimes p. 178
… returns to the basics of Java and describes how to make a program behave in
different ways in different situations.

Chapter 15 – Making things happen. Again and again p. 202
… extends the previous chapter to show how to make a program repeat an
operation over and over again.

Chapter 16 – More methods p. 221
… shows how to use the techniques from the preceding two chapters in imple-
mentations of object types.

Chapter 17 – Collections p. 236
… concludes the description of features of Java by showing how programs can
be written to handle large collections of data rather than just single values.

Chapter 18 – A case study p. 261
… ties the chapters together by describing and illustrating the process of devel-
oping a program from specification to final implementation.

Chapter 19 – More on testing p. 294
… reminds us that all programs should be tested and that more complicated
programs require more thorough testing still.

Chapter 20 – Onward! p. 309
… rounds off the book with brief descriptions of a few of the more advanced
Java features.

If you’re approaching programming as a complete novice you should aim to
work through these chapters in this order. Don’t be tempted to skip straight to
the chapters with Java in! It’s extremely important that you understand what
you’re trying to achieve and the best ways of achieving that before you go any-
where near any programs. This might seem odd, but please bear with us!

If you’ve already programmed in some other language (particularly some-
thing like Pascal or C, or definitely if you’ve met C��) and just want a flavour
of Java you’re probably safe to skip on to Chapter 6 or 7. It would still be a good
plan to skim through the earlier chapters, though.

At the end of the book you’ll find a quick Java Reference, a Glossary and an
Index. This is where to look when you realise that you need that little bit of
information but can’t remember where it was.

Understanding what you read
There are some conventions that you need to keep in mind as you read.

In the text, anything in this font is a Java statement or name. Anything in
this font is not.

All programs and classes also appear in this font. Like this:

/*
Duck.java
A simple Duck class.

AMJ
22nd January 2003

*/

public class Duck
{
private String name;

vi How to program using Java

public Duck ()
{
}

}

Anything not in that font is not a program. Fragments of programs also
appear in this font:

System.out.println ("Quack");

Anything in this font is correct Java.
Where a user is entering a value, the user’s typing is shown in bold:

Enter your name: Tony

Sometimes it is necessary to show just the general format of the Java
statement. This appears like this:

format of a Java statement

For example:

�type� �identifier�;

Anything that appears between � and � in these examples is a description
of what is required in the program. Examples presented like this are not
valid Java!

Finally, sometimes there are things that need to be laid out in a way that looks
like a program, but isn’t a program. This appears in the same font as a program,
but in italics, like this:

IF the value of "sold to" is blank THEN
Set the value of "sold to" to the Reserve object

OTHERWISE
Display an error message – the Duck is already sold

END IF

This is not valid Java.
There are many definitions in the book. Words that are defined in the

Glossary at the end appear like this in the text.

A note on programming style
You will learn that programming style is an important element of writing a
program. Style refers to the way in which a programmer lays out a program,
what names are chosen for various things in the program, and what else might
be added. Programming style is a very individual thing, and develops in any
programmer over many years; it’s very much like handwriting.

The programs and examples in this book were written by two people. We
each have rather different programming styles, so we’ve negotiated and agreed
to adopt a “house style”. You cannot imagine the bloodshed. We think that the
style we have finally agreed to adopt is a reasonable compromise and that it
should be reasonably clear.

Develop your own style as you learn to program. Copy ours for the moment
if you want to, but if you find things that you don’t like don’t follow them.
Just be consistent.

A note on persons
You will discover soon that the chapters in this book make use of the first
person, and the first person singular in particular. This might seem odd in a
book that has been written by two people. The thing to remember is that each
chapter was, in fact, written by just one person. You can amuse yourself, if you
like, by trying to work out who wrote which one … There is the occasional clue.

Using this book vii

viii

To the Student

Hi.
Welcome to the book. We hope you like it.
If you’re a student just starting out on your first programming course, this

book is for you. This book contains what we think you’ll need to know as you
go through your course. We very much hope you’ll enjoy reading it and come
to enjoy programming.

Because we want to get something absolutely clear before we go any further;
programming is enjoyable. It’s a creative pastime, and has been called by some
a craft. Writing a program is the process of creating something from nothing –
the process of creating something that solves a real problem and hopefully
makes the world a better place. A complete and correct program can be a source
of great satisfaction to a programmer. Even the appearance of the lines of a pro-
gram laid out on a sheet of paper can be a thing of beauty, almost like a poem.

But enough of these fine words. We would be lying to you if we didn’t admit
that many people do not especially enjoy learning to program. Many people do
find it difficult, but just as many take to it quickly and easily; we suppose that
you’ll be finding out which one you are in the next few weeks. Whichever turns
out to be you, just keep in mind that anyone can get there eventually; there’s
nothing special about people who can write computer programs.

This book is not like many of the other books on programming that you can
see on shelves in the bookshops or libraries. For a start there’s no chapter on the
history of computers, gloriously illustrated with highly amusing photos and
hairstyles from the 1950s. No. We’ll be assuming that if you want to look at that
sort of stuff you know where to find it, and you’ll go and seek it out. No. This
is a book about programming.

You notice that we say programming and not Java? That’s important. What we
are about here is learning to program, and the programming language that we
have chosen to use is something called Java. The skills and techniques that
you’ll find in this book, and which you’ll learn, can be applied to many, if not
most, other programming languages. A mechanic does not learn to repair just
one kind of car, and a chef does not learn to cook just one kind of pie. So a
programmer does not learn to program in only one language.

Just reading this book won’t turn you overnight into a programmer. Reading
this book will help turn you into a programmer, but you’re going to have to do
other things. You’re going to have to write your own programs. You’re going to
have to practise. There are plenty of our programs in this book, and the first
stage for you is to look at these and understand them. Then you’re going to
have to take the leap of starting to write your own programs. This transition –
from understanding a program that someone else has written, to writing your
own programs – is difficult, and let no one tell you otherwise. When you’ve
managed it you’ll have achieved something that should make you very proud.

The chapters that you’re going to read are quite short. This is quite deliber-
ate. With any luck you’ll be able to find time to read them between classes or on
the bus home, or something. As you read, doodle on the book, or make notes.
Read actively and think about what you’re reading. Learning is about thinking
and reflecting, not just about reading.

Right. Sermon over. There’s one last practical thing. You’ll find out soon that
we’re going to assume that you’ve been given a copy of something that we’re
going to call your Local Guide. This should explain how the Java system that
you’re going to use works, and should fill you in on any other little local details.
If you’ve got that (and there’s no need to look inside it just yet), all that remains
to be said is …

… let’s go and do some programming!

To the Student ix

x

To the Teacher

Hello. Welcome to a book about learning to program.
Before we go any further, you need to be absolutely clear about what it is that

you are holding in your hand. This is possibly a book with the name of a pro-
gramming language in the title that is unlike any book about with the name of
a programming language in the title that you have encountered before. And
you have probably encountered many. Too many.

A big claim, that. But this is not a book about Java. This is not a book that
seeks to explain all the minute details of the Java language.1 This book contains
no UML and none of whatever the flavour of the month is at the moment in sys-
tems development. This is not a book that an experienced programmer, work-
ing in industry, would use as a reference while working on some commercial
project. There are lots of books like that, and lots of books written for experi-
enced programmers, and this is not one of them.

This book came about like this. We’ll let Tony explain.

I’ve been to a few conferences on teaching computing, and I’ve given a few presentations
and so on describing some of my ideas on what’s wrong and right with the way we teach
programming. I think I’ve come to the conclusion that there’s rather more that’s wrong
than right. A publisher’s rep came up to me at one of these happy events and started to
pester me to write my own Java book. I declined, since there were already far too many
Java books about and I saw no need to add to this needlessly large pile of paper. More to
the point, I didn’t know Java, even if it was flavour of the month at the time.

The problem that then emerged was that this was a persistent publisher’s rep. I kept
finding that she kept popping up in my office. I will admit to having been bought a beer,
but despite advice from other authors, I always seemed to miss the free lunch.
Eventually, during ITiCSE 2001 at Canterbury, I cracked and agreed to write some-
thing. But only on my terms. I was not going to write another totally unnecessary book
about Java. I was, in fact, going to write a book about programming and C��. I knew
C��, you see. It was sort of last month’s flavour that was still quite good.

The C�� book has been and gone. You might have seen it; it’s the one with all the
sheep. Now we come to the Java version. First, let’s be very clear that this is not just the
C�� book rewritten in Java. Some of the chapters are similar, yes. The style is not com-
pletely different, even if the sheep have mysteriously become ducks. But the whole basic
approach and structure have been revisited. The main change is that Java demands a
much earlier and deeper discussion of objects (which is present and correct), and that
objects need to be used more and throughout. The rest of the material has all been revis-
ited too, and changed where needed. Underneath, though, the approach is the same – the
underlying belief is that students need to learn to program, they do not need to learn
Java or C�� or some other language. And they need to understand that.

That is why this is a book about learning to program. Specifically this is a book that
is intended to support a student following an introductory programming course in fur-
ther or higher education. There is sufficient Java in this book to be included in such a
course; there are also some pointers in the final chapter that would be of interest in the

1 You can probably tell that from the size!

To the Teacher xi

more ambitious courses.2 My hope is that after reading this book, and after following
your course, a student would be able to write some reasonably complex Java programs
and make sensible use of one of the many other Java books that are available.

Now let me explain why this book is like this. I have taught programming for many
years in what is probably one of the most respected university computing departments
in the UK. Every year I have some successes, and every year there are failures. I see stu-
dents struggle with this topic; they are struggling with something that lies at the very
heart of our discipline. I often see students suffer as they attempt to come to terms with
programming; often I have seen them drop out of their degree simply to avoid more
programming. I have certainly seen them carefully choosing course options in future
years to avoid anything that resembles programming.3 Your students might be differ-
ent, but somehow I doubt it (and if you think they are I respectfully recommend a
second, closer, look). This sad state of affairs just cannot be right.

One aspect of this problem (or at least one issue that contributes to the problem) is
the nature of the programming textbooks available. These are often weighty tomes
indeed, and many run to well over 1000 pages. You know the ones I mean. Most con-
tain far more than could ever be learned effectively in a single course that is, after all,
only one part of what a student is expected to study during the year. These books (there
are a few honourable exceptions, of course) simply do not meet the needs of our students.

There was one last thing that I had to do before starting on the Java book. I had to
learn some Java. Oddly enough, I did not seek out a Java programming course. I did not
sit in a room with 200 or more other people trying to learn Java. No. I found someone
who knew some Java (so a welcome to Graham!), I got him to tell me the basics, and then
I had some fun writing some programs. Isn’t it odd that we still expect students to learn
to program from attending our lectures?

Now, this book works like this. It not our intention, or our place, to try and
replace your lectures. The place of this book is to support your lectures by pro-
viding something that your students will actually read, hopefully before your
lecture. Our job is to explain to them what’s coming up, why it’s important, and
why it’s useful. Each chapter should occupy about a week in a 20-week course;
for a student this week should probably include a couple of lectures, some
supervised practical time, and opportunities for plenty of practice. There are
some exercises at the end of each chapter; please add in some of your own to fit
your own local system or needs.

You might think that sometimes our explanations are a little simplistic.
Sometimes we admit that we are, in Civil Servant terms, “economical with the
truth”. This approach is essential with a language as complex as the language
that Java has now become. There are so many little details that can tend to get
in the way of the real business of the day, which is to learn to program.
Sometimes we’ve added a more complete explanation as a footnote; you might
well want to go into more detail, particularly with your more experienced or
advanced students. It’s up to you.

As for the technical details, all the programs in this book have been written
and tested using, at the earliest, version 1.4.0 of the JDK running on a Linux plat-
form. We believe that all the programs work (except where stated otherwise),

2 But those teaching more ambitious courses would do well to ponder whether it is better for
a student to understand a little Java or to be totally baffled by a lot of Java.

3 At Leeds there is a second year course on Linear Programming. They avoid that too. Just in
case.

xii How to program using Java

and should work unchanged with other comparable Java systems. One issue
might be that we’ve chosen to use the ArrayList structure, which only
appeared in JDK version 1.4.

There’s one last thing we need you to do before we start. We don’t know
what Java system you’re planning to use. We know nothing about your editor-
of-choice, and we don’t even know what operating system you’re using. To be
honest, we don’t much care. We’ve ignored all these issues, since we want this
book to be useful to everyone. Obviously, though, there are some things your
students need to know. As you read through the book you’ll see that we’ve told
them about something called the Local Guide.4 We need you to put this together
for us. Here you can describe how your system works, you can set down coding
or layout standards if you want to, and you can pass on any other local wisdom.
You could probably combine it with some existing set of notes. We hope
that’s not too much work for you. Thanks. The exercises at the end of
Chapter 2 include most of the things that we need you to make sure that your
students know.

Finally, we hope you agree with our reasons for writing this book. If you do,
we’re ready to go and teach some programming!

4 If you were to suspect that we’ve “borrowed” this idea from Leslie Lamport’s LaTeX book,
you’d be quite correct.

xiii

The web site of the book

This book is accompanied by a web site. The address is:

http://www.comp.leeds.ac.uk/tony/book/java/

The site is mirrored here:

http://www.palgrave.com/htpuj/

On the web site you can find:

● All the code that you’ll need to complete the exercises.
● An interactive Java reference using the examples from the book.
● All the solutions to the exercises, with some extra details.
● Additional exercises for every chapter.
● All the programs from the book, so that you can download them, try them

out, and adapt them.
● Links to free Java compilers, editors, and other development tools.

There are also forms to submit comments and useful links, and much more.

xiv

About the authors

Tony Jenkins is a Senior Teaching Fellow in the School of Computing at the
University of Leeds. His hobby is teaching introductory programming. He is
lucky that his hobby is also his job. He has given many presentations and
written many papers about the ways in which programming is taught.

Tony gained his BSc from the University of Leeds in Data Processing (back
when computers were real computers) in 1988. Five years spent writing pro-
grams in what many call the “real world” convinced him that fun was more
important than money, and he returned to the University of Leeds in 1993. He
has been teaching since then, and teaching introductory programming since
1995. In 2002 the University of Kent at Canterbury saw fit to award Tony an MSc
for research into the experience and motivation of students learning to program.

When not at work, Tony can generally be found with Dave and Wallace in the
Grove or the Eldon, probably after two hours on the terraces at Headingley,
observing the antics of the Tykes or the Rhinos. He has been known to drink beer.

Tony approves of cats, but is allergic to them. He thinks that ducks are alright,
but he has never been closely acquainted with one.

Anyone wanting to contact Tony about this book (or just to have a chat)
can send email to tony@tony-jenkins.co.uk. There are rumours of some
sort of web page at http://www.comp.leeds.ac.uk/tony/, but
http://www.leeds-camra.com/ is probably a better bet.

Graham Hardman works as a computer support officer in the School of
Computing at the University of Leeds, and has done so since graduating from
there with a BSc in Computer Science in 2001. During his time as an under-
graduate, he acquired the nom de plume Mr Gumboot, for reasons lost in the
mists of time, and probably best left there.

In the course of his job, Graham writes programs in many languages, includ-
ing C, Java, Perl and Python. He can usually be found helping to maintain the
large number of Linux workstations and servers in the School, but has been
known to touch Windows machines on occasion.

Outside the hallowed corridors of Yorkshire academia, Graham maintains an
avid interest in an organisation known as Everton, apparently a popular gen-
tlemens’ sporting establishment in his home town. He can sometimes be found
in the Spellow House on Dane Street enjoying 5.68cl of draught Irish stout with
various gentlefolk in royal blue attire. He also chases inflated spherical objects
on artificial grass surfaces, is trying (and struggling) to teach himself Greek,
and possesses a drumkit and several guitars.

Graham currently lives in Armley, Leeds with his wife Tanya, two guinea
pigs named Arthur and Geraldine, a fish named Colin, and several dozen
unnamed feral pigeons. He would rather like a dog, but feels that one would
get decidedly bored in their 6 m2 back yard.

Graham can be contacted at gph@mrgumboot.co.uk, whether to discuss
Java, the 2008 European Capital of Culture, or the Modern Greek verb system.

xv

Acknowledgements

There are, as always, many people that we need to thank for their help in
preparing this book. This has indeed been something of an experience.

Thanks are due to all at Palgrave for their support and advice. Tracey Alcock
started it going all those years ago (because she really wanted a Java book and
not a C�� one), and Becky Mashayekh and Anna Faherty have kept us going
more recently.

Christine Jopling once again drew the pictures. We only wish there was space
for all the ones she drew before we changed the chapter titles. As always, Chris
never seemed to mind if we needed just one more picture, or some really subtle
and annoying change.

We are very grateful to the anonymous reviewers of the first version of this
text. We know that one of you was David Barnes of the University of Kent
because of some of the things you (quite correctly) said. The second reviewer
remains anonymous, even if we do have our suspicions. And once again our
colleague Nick Efford volunteered to go through a more complete version mak-
ing many useful suggestions, most of which have hopefully found their way
into the final version.

Respect and thanks to Mukesh and the team in Chennai for turning the Word
files into a book.

Elvis the Duck is a bit of a mystery. Flossy the Sheep (as seen in the C��
book (and indeed as seen on Elvis’s wall)) could be explained, but Elvis is a
mystery. The best theory is that Elvis is Christine’s idea, probably because she
can draw ducks. Chris also produced Zoot the Coot. Tony would like to claim
some of the credit for Don the Swan and Bruce the Goose.1 Graham produced
Mr Martinmere, because Graham is from that part of the world.

We are also grateful to Walrus Gumboot.

1 Yes. This is a very bad joke to do with Goslings.

This page intentionally left blank

1

Good Evening. Glad you could make it. Pull up a chair. Just let me put some
more logs on the fire. Move the papers off the stool. Help yourself to a drink
from the cabinet; there’s some orange juice at the back, and maybe something
stronger somewhere. I’m afraid I’ve run out of toast and pretzels. Would you
like a chocolate digestive?

Ah, you’ve got a copy of the new book, “How to Program Using Java”. A
wise choice if I may say so. While you have your drink and digestive just let me
explain what all this is about. There are some things that you’re going to need
to know before we start.

This is Chapter 0 and that is your first lesson. Most books have Chapter 1 as
the first but this one has Chapter 0. I’m afraid that computers are like that.
You’re going to have to get out of the habit of starting to count from 1.
Computers have a nasty habit of starting to count from 0 and if we’re going to
write programs to make a computer do useful things for us we’re going to have
to get into that habit too.

Before we go any further allow me to explain what this book is and more
importantly what this book is not.

What this book is not
This is not a book about Java. There are plenty of books about Java available
and it would have been very foolish of Graham and me to spend our precious
leisure time trying to add to their number. This is not a Java reference book,
although there is a handy Java reference in the back. It is not a book to read if
you are already confident about programming and can program well in some
other language. Oh no. This book is for people who can’t program. It is for peo-
ple who don’t have much idea of what the whole thing is about. It is perhaps
even a book for people who are starting a course in programming and are just
a little bit worried about it.

What this book is
This is a book about learning to program. There are not many books about
learning to program even if some books about programming languages claim
to be about learning to program. These claims are normally wrong. This is a
book about learning to program, and the language we will use to write pro-
grams as we learn is Java. This means of course that you will also learn some
Java, but don’t confuse the two things. If you can write programs in Java you
can quickly learn to write programs in lots of other similar languages.

Computer programs are written in computer programming languages. Deep
down most programming languages are basically the same. They use the same
concepts and ideas and much the same constructions. Sometimes the way of
achieving something is exactly the same in several languages. If you can learn
to program in one language you can normally pick up another language with-
out too much bother. I originally learned to program in a language called
BASIC. Then I learned another called Pascal and then something else called C.
Eventually I arrived at a development of C called C��, and finally I came to
Java, the language in this book. It’s learning the first language that’s the difficult
bit; it’s much, much easier after that!

After they’ve managed the first language a lot of people find that they enjoy
learning new ones. Graham and I have a colleague who claims to make a point

2 How to program using Java

of learning a new language every year. There are many programming
languages. Some have been designed for a particular purpose and are very
good in that special area. Others, like Java, have been designed so that they can
be used for almost anything. As you learn more and more programming, and
more and more languages, you’ll come to be able to pick the right language for
the job. But you have to start somewhere, and you’re starting with Java.

This is a book about learning to program. It is not a book about a particular
programming language. This means that this book is rather unusual. There is
not surprisingly a lot in this book about learning to program but not very much
just about Java. When you’ve read this book and when you’ve done all the
exercises you’ll be able to get a different book about Java and learn about all the
extra fiddly little details that we’ve missed off as and when you need them. Java
certainly has a lot of these, and the last chapter will point you in the right direc-
tion. Our job in this book is to put you in a position where you can use one of
the other books if you want to learn more Java or another language.

You are learning to program. You are not learning Java. Promise me that
you’ll remember that.

Who this book is for
This book is mainly for students following a first programming course in Java
as part of a further or higher education course. This will probably be in the first
year of the course. It is especially for those students who have never done any
programming before. It doesn’t matter what your main course is, whether it’s
computing or something totally different. If you’ve not done any programming
before this is the book for you.

It really doesn’t matter at all if you’ve done no programming before. In fact,
about half of the students I meet every year before their programming course
starts have never done any. If you’ve done a bit before you might want to let
your attention wander in a few places. I’ll trust you to spot when these are.

Of course other readers are welcome to join us. If you just want to know
something about programming or object-oriented programming in particular
you’re in the right place. The more the merrier, that’s what I say.

Why this book is like this
I’ve been teaching people to program for a very long time. Every year I teach
many students and every year almost all of them succeed. When they find
things difficult they often go away to read their book. Sadly their book has
almost always been written for people who can already program or for people
who find the whole thing very easy or by people who are very good at pro-
gramming and don’t understand what it’s like to learn to program. Most of my
students do not find the whole thing very easy, and I hope I understand why.
This book is for them.

Often my students tell me that they don’t understand something or that
they’re stuck with some programming topic. They tell me that they’ve been
away and read their book but that it didn’t seem to help. This doesn’t surprise
me because I’ve seen their books. This is the book I wish they’d had.

Without further ado let me explain what is in this book.

What this book is 3

What is in this book
After this introduction every chapter1 in this book has five sections. The sections
work like this:

In brief This section introduces you briefly to the topic of the chapter. It tells
you what the chapter is all about and tells you what you should
understand after reading it. Think of it as an enticing appetiser. Our
friends who have done some programming before might want to
read this to help them to decide whether they need to read more.

The idea This is the main part of the chapter. It explains the new idea that is
being introduced in some detail and illustrates it with sample
programs. This is the section you should pay the most attention to.
It is the hearty main course.

Examples Most chapters also have some examples. These use the new ideas
from the chapter and apply them to a new problem. I’ll show you the
correct solutions and working programs and explain why they are
correct and why they work. This is the dessert and is something to
look forward to.

Exercises There are always exercises or tasks for you to try yourself. They are
not optional! You should work through these on your own, and
don’t start looking at the answers until you have. You should linger
a while over this. Think of it as the cheese board.

Summary Finally you’ll find a brief summary of the chapter. This explains what
you should have learned and what you should now be able to do or
what you should understand. This is what you should be able to do
before going on to the next chapter. The coffee and after-dinner mints.

You should try to read each chapter in one sitting; they’re not very long.
Hopefully you’ll be able to read one on the bus on the way home or something.
Then try the exercises later on. Don’t be tempted to read the book while sitting
at a computer. Read the chapter. Then think about it. And then go to a computer
and try the exercises.

This book uses an approach to object-oriented programming called “objects
first”. We’ll start by looking at what “objects” are and how we might recognise
them in the real world. Then we’ll move on to see how we can implement
programs using objects in Java. Some Java books don’t deal with objects first;
many years of experience have convinced me (and others) that they’re wrong.

The chapters
The chapters are short and so there are quite a few of them. Here’s what’s in
them. Read this now and you’ll see where we’re going.

You are here! I want you to understand why this book is like this.
You need to know what’s going to happen in the rest of the book.
Most importantly you need to realise that learning to program and
learning Java are not the same thing.

Chapter 0
What this
book is

4 How to program using Java

1 Alright, I admit it. I mean “almost every”. Sometimes in this book I will stray slightly from
the exact truth and tell you what you need to know at the moment rather than what’s
strictly true. I’ll talk in footnotes when that happens.

The book starts with a bit of background and a quick history
lesson. Before you start to learn to program it’s important that
you understand what a computer program really is. You’ll learn
that programs are all around us in all sorts of surprising places.
Programming has developed over many years. Over this time
there have been many different approaches and many differ-
ent languages. Java is the programming language you’ll use.
In order that you appreciate why it is as it is we’ll also have a
brief history of programming and of Java itself.

You are going to learn to write programs. You are also going
to have to learn how to make your computer execute your
programs to make them actually do something. You are going
to have to know how to find the results that your programs
produce.

What precisely you have to do will depend a lot on the com-
puter system that you’re going to use; you might be using
Microsoft Windows, Unix or even something else. I don’t really
mind.

This chapter gives you the general idea of how to create and
execute a program and will tell you what you need to find out
and where to find it. It explains what goes on behind the
scenes when you prepare to run one of your programs.

There are some important things that you will need to get hold
of before starting to learn to program. This chapter explains
what these are and points you in the right direction to find them.

There is also a very quick introduction to a Java program-
ming environment that many new programmers have found
meets their needs – BlueJ.

As well as physical things (like a computer!) this chapter
also goes through some of the problems that some people
have when they learn to program and explains what you need
to do to avoid them.

Java is an example of something called an object-oriented (and
not object-orientated – let’s get that right from the start!)
programming language. In fact everything in Java (even the
program itself, in a way) is an object. This chapter explains
what this means by explaining precisely what an object is and
how you might identify one.

Objects have special properties called attributes and methods.
This chapter also explains what these are and how you can
choose the correct set for the types of object in your programs.

Before anyone can write a program someone must decide
precisely what the program should do. This involves analysis
of the problem that the program is going to address and design
of the solution.

This is really only a book about programming but you will
also need to be able to do some basic analysis and design. You
will need, for example, to analyse a problem you have been
given to solve and then design a solution. This chapter
explains what you need to know to do just that.

Chapter 5
A word on
analysis and
design

Chapter 4
Objects. The
building block

Chapter 3
Before you start

Chapter 2
The mechanics

Chapter 1
Programming

What this book is 5

Without further ado, we arrive at some computer programs and
some Java. This chapter gives you a first look at some programs
in Java, and shows you how the example from the previous
chapter might look in a program.

This points you in the right direction for the rest of the book.

Programming is a tricky business. The title of this chapter gives
the best advice of all for new programmers – Don’t Panic!
Programming is a structured activity that requires and even
demands a structured, methodical approach.

Many new programmers do indeed panic when faced with a
new problem. They make mistakes that an experienced pro-
grammer would never make. They make mistakes and work
themselves into a hopeless state from which they can never
recover. This is why many books on programming don’t really
help people as they learn.

This chapter describes the process of writing a program and
some of the common pitfalls and mistakes that new program-
mers make. Hopefully after reading it you won’t make them! Or
at least you’ll realise when you do make them so you’ll only
make them once.

This is over a third of the way through the book and this is the
first chapter that includes a detailed explanation of any Java!
Don’t be tempted to skip straight to it though; the chapters
before are there for a purpose and contain essential background
that you will need to have read and understood.

This chapter introduces the ideas of a variable, the most basic
component of a program, and of course of the program itself. It
shows how variables are used to store and manipulate values
held in a program and explains how to display the values held
in the variables. After reading this chapter you should be able to
write your first Java program.

To write properly useful Java programs you need to be able to
get values from a user. You need a user to input these values,
usually from the computer’s keyboard.

There are a couple of ways to do this and this chapter explains
the Java you need to do it. After reading it you’ll be able to write
some useful Java programs.

For a program to be truly useful we need to have confidence in
the results that it produces. We need to believe that they’re
accurate and correct. This means that we have to test all our pro-
grams very thoroughly. Testing is another structured process
that requires a plan.

This chapter explains how to build up a series of test cases into
a test plan. This plan will allow you to test your programs so that
you can be confident that they work. If you are confident in the
results produced by your program your users should be too.

After reading this chapter you should also understand why it
is never possible to be completely sure that any program works in
every possible case!

Chapter 10
A word on
testing

Chapter 9
Input

Chapter 8
The basics

Chapter 7
Programming
(don’t panic!)

Chapter 6
A first look

6 How to program using Java

Objects are implemented in Java as something called classes. An
object in a Java program is in fact an instance of a Java class.

This chapter introduces a very simple class to show the
basic ideas of how this works. After reading this chapter you
should be able to write programs that make use of other
simple classes, and you should have a basic idea of how to
write such classes yourself.

This chapter looks in more detail at how classes and objects
are defined in Java. There are quite a few fiddly little details
that you need to understand!

At the end of this chapter you should be able to write
simple Java classes and programs that make use of them. You
should be able to identify the classes in a problem area and
design and write a program using them to solve the problem.

Java classes have a public face and a private face. The public
part, called the interface, is available to all programs that use the
class. The private part, on the other hand, is available only to
the class itself. Classes are not unlike people.

This is a very powerful mechanism that allows for data
hiding. It is one of the key ideas that make Java programs
portable between different computer systems and one of the
properties of Java that makes it one of today’s most popular
programming languages.

A well-written Java program written on one computer
should be able to run unaltered on another computer system.
It should be obvious why this is a good thing.

After reading this chapter you should understand the
difference between the public and private parts of a Java class.
You should be able to design classes with suitable public and
private parts and you should understand why this means that
Java programs can be portable and reusable.

This chapter moves on to deal with the rest of the basics
of Java. It describes the two conditional control statements.
Sometimes there are parts of a program that we want to exe-
cute only if some condition is true; a word processor program
should print a document only if the print button is pressed,
for example.

This chapter explains what a condition is and how it can
either be true or false. It explains how to combine single condi-
tions into more complex expressions using Boolean logic.
Finally it explains how you can use such expressions to control
how your programs behave in certain situations.

After reading this chapter you should be able to write more
complex Java programs that can carry out different tasks
depending on the user’s input and on other values. Your
programs will be able to deal sensibly with unexpected input
values and you will be able to implement simple menu-based
systems.

Chapter 14
Making
things happen.
Sometimes

Chapter 13
Get your hands
off my data!

Chapter 12
Classes
and objects

Chapter 11
A first class

What this book is 7

Sometimes parts of a program must be executed many times.
This might be for some number of times that is always known
(determinate) or for an unknown number of times until some
event happens (indeterminate).

This is achieved in Java with program loops. This chapter
describes the different kinds of loops available in Java and
explains how to use them.

At this point you should be able to write many useful Java
programs. You will have learned most of the basic Java you will
need and will hopefully have had a good amount of practice.
You will be a Java programmer!

The new Java in the previous two chapters will enable us to
write some more complex methods in our classes.

This chapter provides some examples of doing that and also fills
in some of the final details in how methods are written and used.

Often programs must process collections of data. The final part
of Java that you need is the ability to store such collections. You
might want to write a program to store the details of all the
books on Java in a library, for example. This program might
need to search for a particular book or display a list of all the
books.

This chapter explains two ways to do this in Java using array
lists and arrays. These two ideas will allow you to design and
write complex and useful Java programs. You will indeed be a
Java programmer!

As you get near to the end of the book you have learned many
things. This chapter ties them all together with one final big
example.

This chapter shows you a problem and explains how to
analyse it, design a solution, and then how to write a Java
program to solve the problem. This is exactly what Java
programmers do and now you should be able to do it too.

With bigger programs you need bigger and better testing if you
are to be sure that the programs work. This chapter explains
how to test more complicated programs and how to test Java
classes so that they can be used elsewhere in other programs
and by other programmers.

And this is the end of the book! You won’t have seen all
the Java that there is (very few people have) but you’ll have
seen, used, and practised a fair bit. This chapter introduces you
to some of the more important and useful aspects of Java that
you have not seen and explains how to find out more about
them.

As you write your programs you will often want quick access
to a short summary and some simple examples of how the
basic Java commands and ideas work. You will want to check
the details of the syntax of some command or you will need to
be reminded of some detail.

This is what you need!

Java reference
and examples

Chapter 20
Onward!

Chapter 19
More on
testing

Chapter 18
A case study

Chapter 17
Collections

Chapter 16
More methods

Chapter 15
Making things
happen. Again
and again

8 How to program using Java

After reading this book you will probably want to move on to
more programming. This section points the way to where you
might start and gives you some references both on the World-
Wide Web and in books to follow up if something has
particularly interested you.

Some languages that you might want to move on to sooner
rather than later are C++, Python, and C#. If this is what you
want to do, you’ll find some handy pointers at the end of this
chapter.

The book is rounded off with a handy glossary and index.

The characters
All good books on programming have a cast of lovable characters; it has to be
said that in some books they’re the best bit. Not wanting this book to be an
exception to this fine tradition2 I too have assembled a suitable cast of suitably
lovable characters to guide you on your way through the book.

Here they are.

Elvis The star of the show. Elvis lives on a wild-
fowl reserve with his friends near a nice big
pond. He used to be just a typical duck
whose day generally consisted of looking
out for the odd person who throws bread in
the pond and going “quack” a lot.

This was not enough for Elvis, and he
failed to find fulfilment in this role. So he has
decided to branch out. Computers seem to
be quite big at the moment, so Elvis has
decided to see what they can offer duck-
kind.

Elvis is a duck that is going to learn Java.

Buddy Buddy is Elvis’s best friend. Buddy is always
keen to try new things, so he has decided to
join Elvis.

Cilla Cilla makes up the happy band of duck
programmers.

Cilla is an especially good friend of Buddy.

Further
reading

What this book is 9

2 There are many fine traditions that should be observed by all books on programming.
I hope that I haven’t missed any; I’ll be pointing them out as we go along.

Bruce Bruce is just a typical
goose. He recently arrived
at the reserve from
Australia, a country where
all the geese are skilled
Java programmers.

Bruce has agreed to
teach Elvis and his friends
all he knows.

Zoot Zoot is a coot. He is not
entirely convinced that
computer programming
has much to offer coot-
kind, but he has decided
to join in. Just in case.

Don Don is the only swan at the
reserve. He finds that the
size of his wings makes
typing difficult and has
little time for computers.

He sometimes gets in
the way.

Mr Martinmere runs the
nature reserve where Elvis
and the others live.

He knows little about
Java, but is not afraid of
using the skills of his birds
to make the management
of his reserve easier.

The end of the start
This is the end of the start of the book. Hopefully you now know what’s coming
up and why it’s coming up in that way. It’s time to read on.

Right. Put the dog back on the chair and I’ll put the fire out. Leave the empty
mug on the table. Mind the crumbs.

Now, it’s on with the show. Remember that we’re in this together and that
I’m right behind you!

Mr
Martinmere

10 How to program using Java

11

In the modern world computer programs are all around us. They are sometimes
hidden away in the most unexpected and unlikely places. All of these com-
puter programs have at some time been written by a human programmer using
the processes and skills that you are about to learn. This programmer has gone
through the stages that you are going to learn about in this book and has
probably used a programming language not unlike Java. At some point in the
past this programmer learned to write programs. Before you start learning to
write programs it is essential that you know what a program is.

After reading this chapter you should understand what a computer program
is, and you should understand what programming is all about. You should be
able to identify the various programs that run on the computers you use and
you should be able to make a reasonable guess at how they were written. You
should understand something about Java and why it is a popular programming
language. You should know about some of the people who have contributed to
the development of programming and to other currently popular programming
languages and to Java in particular.

12 How to program using Java

Computer programs are everywhere. I am using a computer program to write
these words. These words will be processed by many more computer programs
before you read them; an electronic mail program will be used to send them to
an editor, a backup and compression program will be used to keep a safe copy,
and the typesetter will use yet more programs. It is entirely likely that a com-
puter program was involved when you bought this book; there would have
been one in the till when you paid, you may have used a computer-based cata-
logue to find the book you wanted, and you may have paid with a credit card
that was authorised by a computer. All these things rely on computer programs,
and all these programs have been developed by human computer programmers.

While I type these words, my computer is running many other programs. The
operating system itself (Microsoft Windows as it happens) is a program. I am
using yet another program to choose which track to play on a CD; this program
is using another program buried deep inside my CD drive to translate the data
stored on the CD into sound. The CD itself was probably recorded on a machine
that used many computer programs. Many of the instruments played to make
the recording also contained computer programs.

Computer programs can be found in devices ranging from mobile telephones
through dishwashers to sports cars and fighter aircraft. All of these programs
have one thing in common; a human programmer wrote them and went
through much the same processes to write each one.

Computers are pretty useless things without programs. On its own a com-
puter is little more than a collection of wires, plastic, and tiny bits of silicon. On
its own a computer would make a handy doorstop, and little more. It is only
when a program is added to this collection of components that a computer
becomes a useful tool. The development of computer programs is a fundamen-
tal part of the development of computing.

A program
Here is a simple program. It is not the sort of program that can be used on a
computer, but it is a program. It is, in fact, a recipe for chocolate cake.1

Ingredients
4 oz soft margarine
4 oz caster sugar
2 size 3 eggs
3 oz self-raising flour
1 oz cocoa powder

Method
Pre-heat the oven to gas mark 4, 325 �F, 160 �C.
Beat the margarine and sugar together until the mixture is
almost white.

Beat the eggs one at a time into the mixture.
Sift the flour together with the cocoa powder and carefully fold
it into the mixture.

Divide the mixture into two 6 inch round tins.
Bake on middle shelf for 20 minutes.
If desired, cover with melted chocolate.

(Source: Home Recipes with Be-Ro Self Raising Flour, 37th Edition, Rank
Hovis MacDougall, 1982)

Although this may appear to have little to do with computer programming, this
recipe shares many features with computer programs:

● It follows a format dictated by convention – all recipes look like this, with the
ingredients listed first and then the method described step-by-step.

● It is written in a specialised form of language.
● This language has a vocabulary that someone reading it must understand –

beat, sift, and fold are all terms that the person making the cake would need
to understand.

Programming 13

1 You can try it, if you like. It’s really rather good.

● After the ingredients have been listed the recipe consists of a sequence of
steps that the user must follow in the correct order to achieve the desired
result – it would be foolish to put the cake tins in the oven before making the
mixture.

● Some steps require the user to make comparisons and take decisions based
on what they find – in this case the user must repeat the action “beat” until
the mixture is white.

● Some steps require the user to make choices – here the cake is covered in
chocolate only if desired.

It would also be possible (but admittedly unlikely) for a cook to follow all the
steps of this recipe without any knowledge of what the final result was going
to be. That is exactly how a computer interacts with a program; it follows the
instructions that it is given without any knowledge or understanding of the
result that the programmer is trying to achieve.

A computer program is simply a “recipe”, called an algorithm, presented to a
computer in order to allow it to carry out some task. The recipe is written by a
programmer and is expressed in a programming language. The programming
language has a vocabulary from which the programmer constructs the instruc-
tions that the computer can understand and execute. These instructions form
a computer program.

Programming languages
Early “computers” were designed to fulfil a single purpose. The devices
generally considered the earliest computers, the Difference Engine and Analytical
Engine designed and partially built by Charles Babbage, were designed to carry
out the calculation of mathematical tables. This extremely tedious and repetitive
task was an obvious candidate for automation, especially as the many errors
in the human-generated tables could prove very costly.

Babbage never completed his machines. He was misunderstood and ridiculed
during his lifetime and died unknown. One of the few to recognise the potential
and importance of his work was Lady Ada Lovelace, now generally recognised
as the first computer programmer. Lady Lovelace developed a mathematical
notation for representing different ways to “program” Babbage’s Analytical
Engine. Sadly, as the machine was never built, it was never programmed. Today
there is a replica of Babbage’s Difference Engine in the Science Museum in
London; it is the first exhibit in the gallery tracing the history of computing. Any
self-respecting programmer should take a moment when in London to examine
the Difference Engine, especially now that admission is free.

The first electronic computers were programmed in what we would now
consider very “low-level” ways. The programming involved changing physi-
cal components in the computers; levers were set, wires were moved, and
switches were changed. This was a slow and error-prone job. This was also the
time when the first computer program “bugs” were encountered; these were
moths that crawled into the computers, promptly died, and stopped them
working2 properly.

14 How to program using Java

2 The moth normally stopped working properly too. There is actually a school of thought
that this story about the moths is an “Urban Legend”. Why not spend a bit of time looking
in to this on the web?

It became apparent that a different way of programming computers was
needed. The existing way of working was too close to the machine’s way of
operating; the programmer was being forced to think at too low a level. This led
to the development of the first programming languages expressed in a form
that was more convenient to human programmers.

This was an improvement but it was not ideal. Every computer had its own
language and programming any computer was still a complex and time-
consuming task. A language was needed that would be easier to use and that
could be used on any computer. A “high level” language was needed.

This idea had been seen before. At the end of the Second World War Konrad
Zuse had developed a high level language that he called Plankalkul. This was
never implemented, but it remains as the first high level programming
language ever described.

The first language to be implemented and used was FORTRAN, first released
in 1957. FORTRAN was designed mainly for mathematical applications and
was highly portable; FORTRAN programs would run unaltered on many differ-
ent types of computers. Languages based closely on the original version of
FORTRAN are still popular for many mathematical applications today.

Many more languages followed. Some were designed to be truly general-
purpose and others were designed for particular types of application. Notable
languages include:

Lisp Lisp was designed specifically for List Processing applications. It is
still used today in some areas of artificial intelligence.

Algol Algol offered programmers the ability to express algorithms in a
neat and concise way. In many ways it is the earliest ancestor of Java.

COBOL COBOL was designed for applications in business. It offered sophis-
ticated features for processing large files of data to produce the sorts
of reports that managers needed. Decisions made in the develop-
ment of COBOL programs in the early years of computing led to
most of the panic surrounding the “Y2K Crisis” at the start of this
century.

BASIC As programming languages developed there was a need to train new
programmers. BASIC was a language designed for beginners; it
included all the features of most other languages and was a fine
learning tool. Most of the early home microcomputers in the 1980s
provided a version of BASIC as their programming language.

Simula Simula was a special-purpose language, designed to carry out simu-
lations in applications such as queuing theory. In a way it is also an
ancestor of Java as it introduced the concept of an object.

Java
We come now to Java. Java is the latest in a proud family of languages. Its
origins can probably be traced back to a language called BCPL. BCPL was
developed at Cambridge University in the late 1960s as an alternative to
FORTRAN. BCPL was developed by Martin Richards while he was visiting the
Massachusetts Institute of Technology (MIT); it became widely used by those
working on the new Unix operating system there.

Programming 15

A more direct ancestor can be found in the B language also developed at MIT
in the late 1960s and early 1970s. B was designed as a programming language
for developing systems on Unix, which was yet another project being
developed at MIT.3 B was developed, extended, and refined and eventually
evolved into a new language, imaginatively named C. C was first fully
described in “The C Programming Language” by Brian Kernighan and Dennis
Ritchie in 1978. C became one of the most popular programming languages, if
not the most popular, in the 1980s and 1990s. It is still widely used today.

In the early 1980s an extension to C was proposed by Bjarne Stroustrup; this
was C�� which is essentially a development of C with extensions to support
something called object-oriented programming. Stroustrup was influenced by
Simula and wanted to extend C to include object-oriented facilities. C�� offers
significant advantages over C for many applications, although even Stroustrup
himself has remarked that C is still to be preferred in some areas. The key is
choice; C�� can be used as an object-oriented language or it can be used in a
more traditional, C-like, way. This flexibility means that C�� became one of
the most popular programming languages in a whole range of applications.

Java can in a way be seen as a further development of C��, although it was
developed from a “clean slate”. The history of C�� and its development means
that it is effectively a hybrid language; in some ways it is an object-oriented
language while in others it is more traditional. Java is a much more pure
object-oriented language.

Java was developed by a group led by James Gosling at Sun Microsystems. It
started out as part of something called the “Green Project”, a research and
development project started by Sun to try to look ahead to future trends in
computing. The project developed various electronic gadgets aimed at the
consumer market. These gadgets needed to be programmed and so a new
language, originally called Oak, was developed. Oak is the language that
eventually became Java; rumour has is it that the name was changed when the
Green Project discovered that there was already a programming language
called Oak. The name “Java” has a lot to do with coffee, a very popular drink
among computer programmers; the Java logo of a steaming coffee cup can be
see on Sun’s Java web pages to this day (and versions of it are liberally spread
around this book!).

Java is now one of the most popular programming languages around.
Its heritage and design means that programs written in Java can run unaltered
on all sorts of computers and devices (I have a mobile phone that can run
small Java programs!). This design is based around something called the Java
Virtual Machine (or JVM), which we will meet later on. The JVM is, incidentally,
written in C.

The history of programming languages is quite fascinating in its own right.
There are pointers to help you find out more in the Further Reading section
at the back of the book. You might want to check out some more details of
the history of Java, and perhaps even see what James Gosling himself has to
say about it. If you understand how a language has developed you can often
understand why it works the way it does.

16 How to program using Java

3 You may well have met or heard of the most popular modern incarnation of Unix, the free
operating system Linux.

There are no real examples in this chapter (I did say that some chapters wouldn’t
have any!), but here’s an illustration of something that you should remember
while you learn to program:

Many programming languages are basically the same.

This is simple to illustrate.4 A first example is something called a loop, and in
particular a “for” loop. Look at these for loops written in a few programming
languages:

Pascal for i := 1 to 10 do
BASIC for i = 1 to 10
C for (i = 0; i < 10; i ++)
C++ for (i = 0; i < 10; i ++)
Java for (i = 0; i < 10; i ++)

Take it from me that each of these five has pretty much exactly the same effect
in a program. They are examples of the same type of command in five lan-
guages designed for quite different purposes. Even if you don’t yet understand
what a for loop achieves, you should be able to see the similarities (yes, the C,
C��, and the Java are all exactly the same).

Computer programming languages evolve. When someone designs a new
language, they include all the basic features that are found in other languages,
and it makes sense to use a way of expressing them that is similar to these
other languages; for one thing it makes the new language easier to learn and
therefore more likely to be adopted.

Here’s another example. This is a conditional statement (a statement that lets
a program make a choice), in this case testing whether some value (called x)
is less than 10:

Pascal if x < 10 then
Python if x < 10:
C if (x < 10)
C++ if (x < 10)
Java if (x < 10)

Programming 17

4 It is also a fine example of some of the things that I’ll tell you that are not strictly true. It is
true that the vast majority of the languages that you are likely to meet for the time being
are all the same. These are called procedural languages. You might in the future meet
functional languages such as ML or Lisp which do work in a rather different way.

1.1 If you have access to the World-Wide Web look up some information
about some of the main figures in the development of C, C��, Java, and object-
oriented programming. Dennis Ritchie, Brian Kernighan, Bjarne Stroustrup,
and James Gosling all have homepages that can be found quickly and easily.
There’s a list of web search engines at the back of the book.

1.2 An important part of your development as a computer programmer is
that you know something about other figures whose work has been funda-
mental to the development of programming. Use the web to find out more
about Charles Babbage, Lady Ada Lovelace, Alan Turing, and Grace Hopper.

1.3 In this chapter a recipe for chocolate cake was shown as an example of an
everyday thing that has some of the same characteristics as a computer pro-
gram. List at least two other everyday things that have the same characteristics.

1.4 Look around you know. What things around you have computer
programs inside them? Who do you imagine wrote them, and how?

1.5 If you have access to a computer running Microsoft Windows press
Control-Alt-Delete and click on Task Manager. Under the “Applications”
tab you’ll find a list of the programs running on the computer. See if you can
discover what some of them do.

1.6 Alternatively, if you have a Unix system, type top at the shell prompt and
look at the output. This shows you all the processes (programs) running on the
computer. See if you can find out what some of them actually do.

18 How to program using Java

Once again the C, C��, and Java are the same, which is to be expected as C��
is a development of C (in fact all valid C programs are also valid C�� pro-
grams) and Java is based closely on C��. But the examples in the other two
languages look very similar, as would examples in many more languages.

Remember this. You are not just learning Java. You are learning to program
and you are learning principles that you will be able to apply in many other
languages.

Computers are all around us and so, therefore, are computer programs. Any
computer that is carrying out any useful task has somewhere inside it a pro-
gram. In fact it probably has many programs. All these programs were written
by human programmers using a programming language.

As computers have become more sophisticated so have the languages that
are used to program them. Early computers were programmed with switches
and levers and then by low-level languages. This was so time-consuming and
error-prone that higher-level languages were developed. Over the years some
of these languages have died out while others have been refined and developed
further.

Java is one of the latest languages in this evolution.

Programming 19

20

Humans and computers do not speak the same language. Humans communicate
in spoken language, a very complex system of nouns, verbs, adjectives, and so on.
Computers on the other hand are much simpler. Their “language” has only two
symbols, 0 and 1. Obviously some translation must take place if humans and
computers are going to be able to communicate effectively. Something will have
to happen if a computer is going to understand what a programmer is asking it
to do.

A computer program is a description of a way to solve a problem or carry out
a task; we might call it a procedure for solving a problem. It is written in a form
that humans can use and understand. This chapter introduces you to the
processes that take place when a computer program expressed in this form is
translated from this representation into a form that computers can use and
understand. Both these forms are actually the same program in the same way
that this book translated into Japanese would still be this book; all that has
changed is the way it is represented.

After reading this chapter you should understand what a compiler is and
what the process of compilation involves. You should understand how your
programs will be linked with the Java system libraries to produce versions that
can be executed by your computer. You should know what the Java Virtual
Machine is and you should understand that role it plays in executing your
programs. You should also understand how to compile and run your programs
in whatever programming environment you are going to use.

The mechanics 21

The previous chapter explained that a computer programming language is
essentially no more than a way for a human programmer to communicate with
a computer. Humans find it very hard to express themselves using the 1 and 0

binary language of computers1 and computers find it equally difficult to
understand natural human language. A computer programming language is
something of a halfway house between the two; it’s something that both
humans and computers can understand. In many ways the language is not
quite exactly halfway; it’s usually rather closer to the human’s side than to the
computer’s. This means that some special software is needed to translate the
program into a form that the computer can execute. This translation is a process
called compilation. This is the process that is explained in this chapter.

But first a word about the computer environment that you’re going to use.

The “Local Guide”
Computer systems are all different. This is a book about programming and Java
and I don’t want all the details of many different computer systems to get in the
way. I certainly don’t want this book to be useful only to people using a
particular type of computer system.

If you read the introduction, you’ll remember that I’m going to have to
assume that you have a document that I’m going to call the Local Guide. This
guide might be a manual that came with the system or it might be something
specially written for you as part of a course. I’m going to assume that it will
explain to you how to create and run programs on the computer system that
you’re using. I don’t mind what that system is just as long as it’s capable of
running standard Java. What exactly it is doesn’t matter at all in the rest of
this book.

What I’m going to describe now is the process that happens whenever any
program is created and run on any computer. This process is essentially the
same on every platform.

Creating and naming a program
A program exists in a file on a computer system. Each file on the system has a
unique name,2 consisting of a memorable name for the file and sometimes an
extension:

memorable.ext

The file extension normally indicates what type the file is. You may well be famil-
iar with .doc files that contain Microsoft Word documents, for example, or .jpg
files that contain images. The extension for a Java source file must be .java
(hence these are often simply referred to as .java files), and using any other
extension for a Java program is likely to produce a compiler error.

These are possible names for Java programs:

Program.java
Ducks.java
Elvis.java

The extension should never be left off. Doing so will probably cause errors.
Ideally the name of the file should give some indication of the purpose of the

22 How to program using Java

1 Although this is precisely what the users of early computers had to do. A switch that was
on was a 1, and one that was off was a 0, for example.

2 Well, unique in its own directory or folder.

program. We will see later on that the name must also match with part of the
contents of the program.

Any Java program file is created with a simple text editor or sometimes in a
more sophisticated integrated development environment. Common text editors are
vi on Unix systems and PFE or Notepad on Microsoft Windows systems. Many
Java systems, especially those designed for use on Microsoft Windows, also
provide an integrated development environment, normally referred to as an IDE.

The program prepared in this way, whether with a text editor or with an IDE,
is called the source code of the program. It is just a file containing plain text;
the computer has no idea at this stage of how to carry out the instructions in
the program. It is in fact only the name of the file that gives a clue that the file
contains a Java program.

It is worth spending some time becoming reasonably proficient in using your
text editor or IDE. It’s normally possible to do most editing tasks if you learn
just a few commands in an editor but many editors also have many much more
powerful facilities and tools hidden away. You will spend a lot of time editing files
as you work on your Java programs so it’s more than worthwhile getting used to
using the editor. Hopefully the Local Guide gives you plenty of information.

Compilation
When the programmer has created all the source code and is happy with
the program it is time for the program to be translated into a form that the
computer can actually run. This is a process called compilation. Compilation
involves the use of another program called a compiler.3 The final result, a ver-
sion of the program that can be run by the computer, is called an executable file.
The executable file is written completely in a form that can only be understood
by the computer; it is totally impenetrable to most humans.

This gives a process that can be represented like this:

The mechanics 23

The actual process that a programmer goes through to compile a program is
different on different computer systems. There are Java systems available for a
great many computer systems and the compilation process used by every one
is different. Sometimes compilation involves typing a command at a prompt
and other times it is simply a case of clicking a button.

3 Here’s a poser for you. Compilers are computer programs. They are written in computer
programming languages. So, who wrote the first compiler and what did they use? To make
it worse I’ll tell you that most C compilers are written in C.

On the Unix system used to write the programs in this book the compiler is
simply run from a command prompt and is called javac, so to compile a
program stored in the file MyProg.java a programmer would type:4

tetley% javac MyProg.java

If all is well this compilation would usually5 produce another file called
MyProg.class. This is a version of the program that can actually be executed;
it is effectively the executable version of the program. It contains a compiled
form of the .java file, known as bytecode, which can be run using a Java
interpreter on any platform. Often the terms .class file and bytecode are used
interchangeably.

Once again you’ll need to consult your Local Guide to find out how to compile
programs on the system you’ll be using.

Compilation errors
Sometimes a program fails to compile because of some error that the programmer
has made. The error means that the compiler cannot process the source code to
produce an executable file. Faced with this situation the compiler will do its
best to tell the programmer what the error probably is (or at least where in the
program the error seems to be) and the programmer must then find and correct
the mistake.

The way in which you will find and correct errors in your programs depends
again on the system you are using. My Unix system simply tells me what
the error is and which line in my program the error is on and leaves me to use
the text editor to correct the error. More sophisticated systems will present the
programmer with the part of the source code producing the error with the
offending section highlighted in some way. Again you should check your Local
Guide.

New programmers often have terrible problems finding errors in programs.
The secret in finding them is to remember two things. First you should always
be systematic; correct one error and then try to compile the program again.
A small mistake in the program, even one single character in the wrong place,
can cause a whole host of different, seemingly unconnected, errors. It is always
a good plan to make the error that you correct first the one that the compiler
reported first; a small error at the top of a program can have many knock-on
effects later on. Second, remember that compilers are not especially clever and
get confused easily; what they are reporting is often the first part of the pro-
gram that they have failed to understand. If the line where the error is reported
looks fine, always look at the lines immediately above the point in the program
where the compiler says the error is.

Running the program
After the program has been compiled into an executable form it is ready to be
run. As usual the precise way in which programs are run is different on

24 How to program using Java

4 The tetley% in this is the prompt on my computer, and isn’t part of what I type to compile
a program. My computer is named after the famous Joshua.

5 Assuming that MyProg.java contained a public class called MyProg, that is. Don’t worry
about this for now, as all will become clear later on.

different computer systems. On a Microsoft Windows system, for example, it is
normally enough to double-click the mouse on the executable’s icon or the
development environment may run the program automatically.

In all cases, though, running a program requires the use of the Java Virtual
Machine. This is another program that runs the compiled version (the bytecode)
of the program on the computer. One of the key advantages of Java is its porta-
bility; the compiled version of a program will run with any JVM, running on
any sort of computer system.

On the Unix system used for this book the command to execute the program
is simply java, so to execute the code contained in the file MyProg.class, the
command is:

tetley% java MyProg

It’s time to consult the Local Guide to check how to do it on your system.

Other useful things
When working on a program it is often very useful to be able to print your
source code out. This gives you something that you can scribble all over as you
try and work out why your program isn’t working as you hope and expect.6

You’ll have to consult the Local Guide to find out how to print your programs
and to find out where the printers are.

There may be other tools available to you to help you as you learn to
program. There may be a special program called a debugger; this is a tool that
lets you step through a program a line at a time to help you find and correct
problems. There may be a program that helps you format your source code
neatly. Find out what’s available and make sure you can use it.

A closer look
The description of compilation in this chapter is a little simplistic and it will
help if you have a slightly better knowledge of what’s actually going on when
you compile a program. A full discussion of how compilers work is way beyond
the scope of this book and is actually way more than most programmers need
to know, but a little more detail will help you when you start looking for errors
in your programs.

You have seen that there is an intermediate stage between the source code
and the executable version of the program. This stage is called bytecode; it is the
first thing created by the compiler from your source code. You will be able to
see the files produced by this first stage of the process; the extension they have
is always .class.

The bytecode is then executed (by another program called the JVM) which can
access other program code from various libraries on the system, known as pack-
ages. These packages contain the code needed for the basic Java functions
(so that the program knows how to display characters on the screen, for
example). All the code, both from your program and from any packages used,
is loaded together when the executable is run.

The mechanics 25

6 Or indeed something that you can show to people to impress them.

Sometimes the whole compilation process will fail at this final stage. This
might be because the necessary packages have not been imported or because
the code contained in a package has not been used correctly. What has gone
wrong should hopefully be obvious from the error messages generated.

From source code to executable
As you write and test your programs it will help if you remember to think about
what it is that you are creating. You are creating a “recipe” for solving a prob-
lem and you are using a language that is meaningful to humans.7 Before this
can be run on a computer it must be translated into a form that the computer
can execute. The source code of the program must be translated into an executable
version of the program.

This translation is a process called compilation. Compilation is actually a two-
stage process. First the source code is translated into bytecode and then this
bytecode is executed by the JVM which can make use of various system libraries.
The result of this process is the final version of the program, something that is
very different in the way it looks to the source code that you have written!

26 How to program using Java

So the overall process looks like this:

7 Well, to some humans.

There are no real examples to work through this time. You need to check your
Local Guide and become familiar with the systems that you’ll be using.

There are no exercises this time either but there are some things I need you to
do. Get hold of your Local Guide and make sure you find out answers to these
questions.

2.1 Does it matter if the name of your .java file is in upper or lower case
(or a mixture)?

2.2 Which text editor will you be using to create your programs? Or alterna-
tively, will you use an IDE? How do you start it? What are the basic commands
you need to edit a file? Can you get a copy to install on your own computer
at home?

2.3 How do you compile a program? Where does your system put the byte-
code when it has been compiled? How do you use the JVM on your system?

2.4 How does your compiler present error messages to you?

2.5 Where does the standard output from your programs go – to a window,
or a log file, or elsewhere?

2.6 How do you print hard copies of your source code? Do you know where
the nearest convenient printer is?

The mechanics 27

There are two steps in creating a program that can be run on a computer. First
the source code must be created in a file; the name of this file will be required
to have an extension that indicates that it contains a Java program. When the
program has been created it is compiled to produce bytecode; it is this version
that can be run on the computer, using the JVM. This second part of the process
involves the use of the various Java system libraries to produce a complete
working executable version of the program.

There are several skills that you need to master in order to create and run
your programs. You need to know how to create files and you need to know
how to edit them. You must be able to compile your programs and correct the

errors that the compiler finds. Finally you must know how to run the executable
and how to find the output. Unfortunately these skills are different depending
on different computer systems; your Local Guide will give you the details for
your system.

To do any of these things you need to know how to write a simple Java
program. So it’s nearly time to get on with it. But first there are some things you
need to know about learning to program …

28 How to program using Java

29

Learning to program is a complicated business.
Before you start reading the chapters in this book that describe the features of

Java, and certainly before you start to do any actual programming, you’re going
to need to get hold of various things that will come in useful.

After reading this chapter, you should be sure that you have these things. You
should have spent a little bit of time experimenting with them, and you should
have started to learn the skills that you’ll come to need as you learn to program
using Java.

30 How to program using Java

Before you start any Java I want to explain to you what learning to program is
all about. You need to know what it is that you’ve taken on and you need to
understand something about the skills that you’re going to have to call on as
you learn to program.

I’m going to start with a quote that could well sum up what you’ve taken on.

You have chosen a dangerous and challenging path, Adventurer.

A long time ago I used to play a computer game. It was an adventure, and
it just used plain text. These were the days when computer games involved
nothing more sophisticated than typing instructions to the character you were
supposed to be playing. There were no graphics in those days, and certainly no
Lara Croft. The computer didn’t even have a mouse and we got very excited if
a program used some sort of colour beyond different shades of grey. This game
involved all the usual things that you’d find in games like this. You’d move
around mazes of corridors, battle hideous demons, give small pots of gold to
passing dwarves, and fall down the occasional bottomless pit. You get the idea.
Much the same happens in many games today only with better graphics.

I still remember how this game started. After it had loaded (something that
in those days took the better part of half an hour) the screen cleared and this
message appeared:

You have chosen a dangerous and challenging path, Adventurer.

You are at a crossroads. Paths lead North, South, East, and
West. There is a sword and a scroll here.

What next?

You can guess what happened next. I would dutifully pick up the sword and
scroll. I would read the scroll and ponder the pretty useless clues that were on
it. Then I quickly rushed off in a random direction. I very soon met the fire-
breathing dragon that didn’t seem to like me very much, said the wrong thing
to it (hitting it with the sword never seemed to help), and was promptly eaten
alive or burned to a crisp or both. Then it was back to the start and I started the
whole process again.

I never finished this game. I never did work out which dwarf desperately
wanted the bucket with the hole in that I found behind the old oak tree. The
stone tablet bearing mysterious runes remained a totally useless rock with some
odd scribbles on it as far as I was concerned. My friend finished it though. He
spent hours on the computer going east, west, down tunnels, bargaining with
trees that talked, and many equally strange things. Eventually he found what-
ever it was he was supposed to be looking for and won the game. He succeeded
and I did not.

You are reading a book about learning to program. This shows that you too
have chosen a challenging path. I have to admit that it’s not very likely that
you’ll meet a fire-breathing dragon, a talkative tree, or a dwarf with a bucket
fixation (all good metaphors break down eventually) but you’re certainly in for
an interesting and challenging time.

Let no one convince you that this will be easy. Learning to program isn’t easy,
and anyone who tells you that it is easy is just plain wrong. At the same time,
learning to program is not impossible. It can’t be, or there wouldn’t be any
programmers! There’s nothing special about people who can program. As you
read the rest of this book just remember this. I can program reasonably well and
I’m not especially clever. If I can do it so can you!

Let’s think about why this is.

Programming is like driving
Imagine this. Suppose this was a book about learning to drive a car, and that
you’d never driven a car before. I would write chapters about using the brakes,
steering, changing gear, and so on. Imagine that you’d read the book from cover
to cover. You might even have memorised parts of it. You might even have
passed a test on the contents. Now imagine that I put you inside a car in
London and told you to drive to Liverpool. I (and you!) would be very sur-
prised if you or the car arrived in one piece. I hope we agree that no one would
seriously consider learning to drive a car like this.

People learn to drive a car by practising. They spend a lot of time sitting next
to an experienced driver who tells them what to do and helps them out occa-
sionally when things seem to be going wrong. They drive around and practise
the skills they need to develop and perfect. When they’ve developed these skills
sufficiently they take their driving test and hopefully they pass. Sometimes they

Before you start 31

don’t pass and they need to practise some more. Some people find learning to
drive harder than others.

Learning to program is very like learning to drive a car. You are learning
a skill. You will need help from people who already have the skill; hopefully, one
of those people will be me, and another will be Graham! Above all you
will need to practise. There’s no way we can teach you to program if you just read
this book, but we can teach you if you read the book, then try out the exercises,
and then go and practise some more. With any luck you also have some more
people who are going to help you. Whatever you do, don’t be afraid to use them!

But there’s more. Some people pass their driving test the first time. Others
have to take it many times, but most people pass eventually. There are very few
people indeed who could never pass a driving test if they really put their minds
to it and practised. Programming is just like that. Some people take to it straight
away, and they’re the lucky ones. Most people take a bit longer, but anyone can
get there in the end. I’ve never met anyone that couldn’t learn to program. Not
if they tried and if especially not if they refused to give up.

If I had taken the same attitude to learning to drive as I took to my adventure
game all those years ago I would never have passed the driving test. The game
was difficult so I lost interest and gave up. Then again, looking back I probably
believe that I could have completed it if I’d really wanted to and if I’d carried
on. Learning to program is like that too; if you give up when you find some-
thing difficult you’ll never succeed and learn. But if you persevere and if you’re
determined to succeed you will do. I’ve seen many people struggling as they
learned to program but the only people I’ve seen fail to learn to program are
those that gave up. Don’t be like them!

Now, don’t take this the wrong way. The last thing I want you to do now is
throw this book down and set off to do something different. You can learn to
program, and you will learn to program. You just need to remember that things
will probably get a little difficult at times and when this happens you’ll have to
sort things out. Giving up should not be an option! Nor should running away
and hiding.

Now let’s check through what it is that you’re going to need to make sure that
you succeed. These will be, if you like, the controls that you’ll use so you’ll need
to be familiar and comfortable with them.

What you need
Before you start looking at some programs and some Java we need to check that
you’re prepared. There are some things you’re going to need so let’s quickly run
through them.

You will need a book or two. You have one in your hand now but you also
need something that describes how your local computer system works. I’ve
called this your Local Guide, and we’ve already looked at some of the things it
needs to contain. If you’re learning to program as part of a course you’ll prob-
ably also have something else that contains the exercises you’re going to com-
plete as part of the course. You’ll also need a reference to remind you of the
syntax of Java as you program; you can find just such a handy reference in the
back of this book. This doesn’t cover all of Java by any means, but it covers all
the Java that you’ll find in this book so it should do for now.

If you have access to the World-Wide Web you can also find plenty of Java
documentation on Sun’s Java site: http://java.sun.com/.

32 How to program using Java

This is a fine source of information because it’s constantly updated with
all the latest changes and additions to the language. The documentation for
the Java Application Programming Interface (API) is a couple of clicks away from
the main page, and provides you with all the information you need to use all the
features of Java. Much of this documentation is, of course, way beyond the
scope of the Java you’re going to see and use for some time yet, but all you need
is there and using this fine resource is a useful habit to get into from the start.

You obviously also need a computer to run all this fine Java that you are
going to create. You need something that will run your programs (and let you
create them, of course) and will show you the output that they produce. You
need a JVM. For writing and executing the Java that you will meet in this book
just about any sort of computer will do; you don’t need anything especially
powerful. A printer so that you can print out your programs and draw all over
them would help, but it’s not vital.

Your computer needs to have a Java compiler installed; you learned what one
of these was in the previous chapter. You need to know how to get the compiler
to compile your program to produce the bytecode that the JVM needs, and you
need to know how to get the JVM to run this compiled version. There are a great
many Java systems and compilers available all of which are very different to use.
As I said in the last chapter I’m going to have to assume that you have a Local
Guide that explains how to use your compiler and the rest of your system.

You will also need a text editor to create the files that will contain your
programs. You might be using an integrated system, so this might be part of the
whole system that also includes your compiler or it might be a totally separate
thing. You will need to know how to use your editor to create your programs
and how to get them from the editor to the compiler and into the JVM. Once
more, there are lots of editors that you might have available so I’ll have to
assume that your Local Guide explains all the details of that.

If you are missing a compiler or an editor there are plenty of places where
you can get them without spending any money. You can check the Further
Reading section at the back of this book for a list of web sites where you can
download some pretty good free compilers and editors and for a way to get
hold of them if you don’t have access to the Internet.

If you don’t have a Java programming environment at the moment, one that
you might want to take a look at is called BlueJ. This is available as a free down-
load from http://www.bluej.org/. BlueJ is a Java environment designed
specifically for people who are learning to program. The download comes with
all the things you need to write and compile programs together with a fine set
of examples. It’s available for most types of computers, and all you need to
know about it is included in the download.

As well as all the technical stuff you will also need access to an expert or
ideally to more than one! This is someone who can already program and who is
ready and willing to help you. If things get tough this is the person you should
be seeking out. There will be times when you just can’t work out why your
program is producing the wrong answers and you need someone who can help
you work out what’s wrong. You might not need help very often but most new
programmers will need some help and advice at some point while they learn.
Get yourself an expert or two and make sure you know how to get hold of them.
If you can’t find one in person, there are many excellent question-and-answer
sites on the web (including one on the main Java site), and these are a fine, if
slightly less interactive, alternative.

Before you start 33

Above all you need a willingness to learn and you need determination. You
need to be sure that you want to do this, and you need to be determined to see
it through.

If you’ve got all these things then read on!

The Console class
Some things in Java are complicated. Unfortunately one of these is getting a
user to enter values, something that is obviously rather fundamental to most
programs. The program statements needed to do this can throw up all sorts of
errors that need to be dealt with, and this can get in the way of new program-
mers as they learn. The code to do input in Java is, to be frank, horrible.

To lend a helping hand, we’ve1 developed a class that reads a variety of val-
ues from the keyboard. You can find the listing of the Console class in the back
of the book or on the web site. The web site is obviously a better bet as it will
save you typing and hopefully prevent errors.

Before you can use any of the programs after about Chapter 8 you’ll need to
get hold of this class and compile it. The programs will assume one of two
things. One option is that you have created a directory (or folder) called htpuj
below the directory containing your program, and that this directory contains
the compiled version of the Console class produced in a way similar to:

tetley% javac Console.java

The second (slightly more complicated) option is that a jar archive containing
the htpuj package is listed in your classpath. A jar archive containing the
htpuj package is available from the website accompanying this book; its
inclusion into your classpath should be explained in your Local Guide.

You don’t need to worry too much about this now, just be prepared for when
we start using it later on!

Getting help
If learning to program is difficult then learning to learn to program is equally
tricky! The most important thing is that you need to know when you should get
help from one of your experts; get help too soon and you’ll end up not learning
anything, but leave it too late and you run the risk of not finishing your
program in time. Knowing when you should get the help you need is a tricky
business.

At some point in the not too distant future you’ll be sitting in front of a com-
puter trying to write a program and you’ll find that you’re “stuck”. It happens
to all of us.2 You might have some sort of bizarre error message that you just
can’t work out, your program might be insisting on producing the wrong
results, or you might not have the slightest idea how to complete the next part
of whatever task you’ve been set. Whatever the problem is, you need to do
something about it.

34 How to program using Java

1 The “we” is definitely a “Graham”.
2 It happens to me. When it happens I wander down the room to my friend Nick’s office and

get him to look at my program. It’s amazing how quickly he can spot what I was doing
wrong.

Staying in front of the computer typing random symbols or copying random
sections of programs from your books for hours on end is unlikely to work. It
just might (after all an infinite number of monkeys typing on an infinite number
of typewriters would eventually produce this book!3) but it’s not very likely.
You need to do something more positive. I often find that the best plan is to
walk away from the computer and do something totally different for a while.
You would be surprised how often the solution can suddenly pop into your
head when you least expect it as you stand in the queue for a coffee! But if it
doesn’t pop you need to do something else.

There are many things you could try. You could try re-reading the relevant
chapters of this book. If you’ve already done that, or if a re-reading doesn’t
seem to help, the collection of examples at the end of the chapters might help.
You could look at some programs that do something similar to what you want
to achieve and try to adapt them.

If you don’t get anywhere after this go and talk to one of your experts. They
should be able to tell you what’s wrong and they’ll probably be more than
happy to do so. At the same time you should resist the temptation to let your
expert tell you the answer or write your program for you. If you let them do
that you’ll learn nothing.

The golden rule for getting help when you’re learning to program is:

Try and work it out yourself first but don’t be shy about going to an expert.

Always remember that the experts all learned to program for the first time once.
The advantage they have over you is just that they learned a while ago and
that they’ve had a lot of practice since then. They’ve seen all the errors before,
and they can remember what it’s like for you. Never ever believe that they’re
more intelligent than you; they’ve just got a skill that you haven’t (yet!).
Remember that the only real reason that they can do this and you can’t is that
they’re (probably) rather older than you.

Don’t panic!
I’m sorry if some of this sounds very negative and off-putting. Please don’t take
it the wrong way.

I want you to understand that learning to program is difficult and that every-
one who does it gets stuck at some point. There is no shame at all in getting
stuck; it happens to all of us and it happens to all of us all the time.

Of course you might be one of those people who finds programming
very easy and wonders what all the fuss is about. You might be a “natural”
programmer. If you are then I’m sorry for having worried you unnecessarily in
this chapter. But I hope you’ll do me a favour. Go and find someone who’s
finding this really difficult and give them a helping hand. Don’t finish their pro-
gram for them and don’t tell them the answer; if you did that they wouldn’t
learn anything. Point them in the right direction, explain an error message
to them, or give them a clue how to finish their program. Remember that
programming is a social thing. Programmers work as a team and help each

Before you start 35

3 Actually, this is not true. A university recently did research and discovered that the
monkeys would just tend to type the letter S with the occasional W. They do some
wonderful stuff in universities.

other out. You’ll probably enjoy lending a hand and the person you help will be
very grateful. Thanks.

Now it’s time to start on some programming. You’ll get the chance to find out
whether or not you’re a natural programmer!

36 How to program using Java

4 I lie. It wasn’t my computer. It was my friend Mark’s computer, and we typed them in
together. Programming really is a social thing, you see?

Since you haven’t done any programming yet there still aren’t any examples as
such in this chapter. While we’re here though let me just tell you how I learned
to program.

A long time ago, when home computers were a very new thing, you could
buy magazines that contained nothing more than listings of programs. You
could type these into your computer (they were almost always games and were
usually written in a dialect of a language called BASIC) and sometimes they
even worked. I learned to program by typing these programs into my computer.4

Of course, at first I understood practically nothing of what I was typing. For
example, I remember looking very hard at this line:

50 LET X = X + 1

and wondering how this could possibly be right. I mean, X can’t possibly equal
X + 1, can it? In time I came to understand parts of the programs I was typing
and even that one line became less of a mystery. If you can already see what it
does you’re doing better than I did! Eventually I could write my own programs,
at first mostly by adapting those I had seen before.

Later I took a more formal programming course. There were some things in
it that I found difficult and some others that came much more easily. I got by
well enough, by going to the lectures and practising in the labs. There were still
some things that remained pretty mysterious and that I never properly under-
stood, though.

I really learned to program when I finally got a job as a programmer. I worked
eight or more hours a day doing nothing but programming. I worked with
programs (this time written in a language called C) that controlled massive test
machines in a truck engine factory; if I made a mistake the machines could have
exploded and done someone a nasty injury. Sometimes I did it while lying in

puddles of diesel (which is nasty stuff). That was when I finally became a good
programmer.

I’m still learning now. I learn new ways of doing things or new features of
languages. No programmer ever stops learning. I have, in fact, learned
Java (aided and abetted by my friends Graham and Nick) just so that I can
write this book.

Before you start 37

3.1 You are about to start to learn to program. Have a quick look through the
rest of this book and through your Local Guide. Plan how you are going to spend
your time, and write down your plan. Are you going to read a chapter a week
or one a day? How much time can you spend on practice? If you’re following a
lecture course, how are the lectures structured? What topics will you be cover-
ing, and when?

3.2 If you have the chance, talk to someone who can program. Find out how
they learned and ask them what they remember as being especially difficult or
easy. Why not ask your lecturer?

3.3 Take a look at the BlueJ Java environment; you can download it for free
from http://www.bluej.org/. Have a play with some of the examples that
come with the system, and decide whether you want to use it.

3.4 Have a closer look at some of the early BlueJ examples. Take a look at the
Java code that lurks behind the diagrams. Is there anything there that you can
understand? What have the authors put in the programs to help you?

Finally, take a look at the list of the things you’re going to need. Make sure that
you’ve got them all and that you know how to use your editor and compiler.
I can’t help you with this but hopefully your Local Guide can. I’m going to have
to assume that you’ve done it!

Learning to program is difficult but it is not impossible. You’re going to have to
do a fair bit of work; in particular, you’re going to have to do a lot of practice.

A long time ago, when I was learning to program at university, the author of
the book we used5 (a wise man called Doug Cooper) wrote in the preface that:

Now, when I lecture I encourage any student who isn’t so confident to make a
smart friend, and to stick by her side for the term. After all, that’s how I survived
my own first programming class. When I write, I try to be that friend …

I can’t think of any better final advice to give you now than that. That book got
me through my first programming course too and I still use it now, even if it is
a bit battered. Let’s hope this one does the same for you. If you can make a
smart friend that’s even better! If you can’t find a smart friend find a friend
who’s about as smart as you.

Now that you understand what learning to program is all about and you’ve
got all the stuff you need let’s go and learn to program!

38 How to program using Java

5 That book was called Oh! Pascal! and was, as you might guess, about the Pascal program-
ming language. Pascal isn’t as popular as it used to be, but if you ever need to learn it, this
is the book you need.

39

You already know that Java is an object-oriented programming language. Many
other currently popular programming languages including C��, Python, and
C# also use this object-oriented approach. This means, not surprisingly, that
programming in Java (and these other languages) is based around the use of
objects; objects are the basic building block of any object-oriented computer
program. Java takes the idea further than some other object-oriented languages
to the extent that almost everything in a Java program is an object; even the Java
program itself looks rather like an object (even if it isn’t actually one).

One of the key advantages claimed for object-oriented programming is that
the programs developed to implement an object required for use in one
problem can be used again in another problem; the programs to implement the
object are portable. This potential for code re-use is one of the reasons why object-
oriented programming is currently so popular; code re-use has the potential to
save a lot of time and therefore money.

This chapter introduces you to the idea of an object. After reading this chapter
you should understand that objects are the basic component of any object-
oriented computer program and you should also understand what exactly
object-oriented means. You should understand how an object is characterised by
its attributes and its methods, and you should be able to suggest likely attributes
and methods for objects that might be found in some everyday applications.

There is very little in this chapter that is specific to Java. The principles of
objects, attributes, and methods are the same in any object-oriented language,
and even in some database systems that use a similar, object-oriented approach.
In fact, if you’ve done any work with databases you’ll probably see some clear
overlaps between what you’ve learned there and this chapter.

40 How to program using Java

Before starting to write object-oriented computer programs you obviously
need to know what exactly an object is in this context. Informally an object is

something of interest in a real-world problem. When a computer program is
written to solve this problem an object becomes something that is processed or
manipulated by the program. The object has values of interest that are
processed to produce the required results, so it would probably be more
accurate to say that the program manipulates or processes these values rather
than the object itself. Objects are sometimes called “entities”, especially in the
area of database design.1

Objects have values that describe them, called attributes. An attribute is simply
some property that characterises an object; people have attributes such as name,
height, shoe size, and so on. In object-oriented programming some objects can
also have procedures (some might call them functions) that use the values asso-
ciated with the object to calculate some other value or to achieve some effect;
these are called methods. A method is some set of steps that can be carried out to
do something useful or interesting with an object; obviously a method often
makes use of the values of an object’s attributes. An object is therefore defined
by the values of its attributes and the behaviour of its methods.

More formally an object type corresponds to a homogeneous2 group of objects
in the real world. Examples might be ducks, pop singers, or people called James.
Each object type has a particular set of instances, for example, Elvis,3 Britney
Spears, and James Gosling. An object type has attributes and methods and each
instance of the object type has particular values (of the attributes) and therefore
different behaviours (of the methods) for each of these. Normally, when taken
together, the values for an object instance uniquely describe that instance.

An object type is sometimes called a class. This is the name that we will meet
later on in Java, and is the name used in most object-oriented programming
languages. This chapter is not about a specific language, so we’ll stick with the
more general “object type”, but remember that these are basically the same
thing.

Let’s look at these ideas in more detail.

Attributes
Objects are all around us. You’re holding one in your hand now.4 The object you
are holding is a book. Imagine that you were trying to describe this book to
someone else so that they could go and find it in a library full of similar books.
You’d probably tell them the title, maybe the name of the author, and perhaps
you’d also describe the cover. You would tell them some things that were
special about this book; ideally you would tell them the things that uniquely
identify it among all other books. You would not tell them that the book
is printed on paper because all books are like that; you would concentrate on
the things that make this book easily identifiable among all other books. In
object-oriented terms you would be telling them about the values of this book’s
attributes.

An object’s attributes are the features that identify or characterise it. A book
has a title, an author, an ISBN number, and many more attributes (look at the

Objects. The building block 41

1 You may have done some entity-relationship modelling. Objects and entities as used in this
sense are much the same thing.

2 It means “all the same sort of thing”.
3 The duck, not the singer.
4 Or else you’re reading this in a very strange way.

first page inside the front cover). If you give someone the values for these
attributes for a particular book they can always find the precise book you mean;
the values of these attributes uniquely determine and describe the object.

You are an object too. You have attributes that describe yourself; you have a
name, an address, a birthday, and many more. You are an instance of the object
type “Person”. So are all other people, but they have different values for their
attributes. It is highly unlikely that there is another person who has the same
set of values for all your attributes, or at least that we couldn’t think of a set of
attributes that would distinguish you from all other people.

To summarise:

42 How to program using Java

Attributes of a book Attributes of a person

Title Name

Author Date of birth

ISBN number Address

You can probably think of several more possible attributes to add to each list. It
is important that each attribute has one and only one value for each object
instance. People do not have two names5 and books don’t have two titles. No
attribute of an object instance should be allowed to have more than one value.

As well as a name each of these attributes has a particular type. There is a
particular type of value that each attribute can take; a book’s title is a string of
characters, an address is a longer string of characters, a date of birth is a date,
and so on. Each attribute has exactly one value and, in most programming
languages, that value always has the same type for each object of the type.

Programming languages support a range of possible types of this sort; the
names used are slightly different in different languages but the basic types are
the same. Common ones are:

Integer Whole numbers, positive or negative – in C�� and
Java int.

Floating-point numbers Numbers with decimal parts, again positive or negative – in
C�� and Java double.

Character Single characters, generally anything found on a standard
keyboard – in C�� and Java char.

String Sequences of characters, normally spelling words or
similarly meaningful sequences – in C�� string, and in Java
String.

Boolean True or false values, named after their use in Boolean logic – in
C�� bool, and in Java boolean.

Whenever an attribute is identified it should also be possible to determine the
attribute’s type.

You can also see here that different programming languages will (somewhat
annoyingly, it must be said) use slightly different names for the same types.

5 Name here means, of course, forenames and surname (or family name) together.

To keep things simple, we’ll just use simple words for the rest of this chapter;
the details of how Java refers to these things can come later.

Let’s look again at the attributes of a person and add in the type of value
for each. A good name for this object type would be, unsurprisingly, Person.
The precise list of attributes for a Person object type would probably depend
on the purpose of the program that was going to use it, but some common ones
would be:

Objects. The building block 43

Person

Attribute Type

Name String

Gender Character (either 'M' or 'F')

Age Integer

Date of Birth String

Height Floating-point (in metres)

Weight Floating-point (in kilograms)

Address String

This is far from a complete list; you can probably think of some more attributes
to add. Whatever attributes are added each can have only one value of one
fixed type. Sometimes, as in Gender here, the value can be only one of a few
from the type. In most cases it can be any value.

Look again at the type of the “Date of Birth” attribute in the Person object.
At the moment this proposes that the date is stored as a string of characters.
It is indeed possible to use a string like this to store a date, and there are
many possible formats that might be used. The format that would be preferred
would depend on factors such as how and where the date was to be displayed
or the conventions of the country where the program would be used. Examples
might be:

2nd January 2004
2-1-04
2/1/2004
1/2/2004

which could all correspond to the same actual date.
The scheme of storing a date as a string would work if the only operation

ever required on a date were to print it out and if all the people who would see
this would have the same understanding of the format. Complications would
quickly arise if the date were to be processed in some way or needed to be
printed out in a different format. Even simple tasks such as finding the next
date or a person’s twenty-first birthday would be extremely difficult if the date
were available only as a string.

For anything but the simplest problems the string representation for dates
would be far too inflexible. Something much more powerful is needed. The
solution to this problem is quite simple; the “Date of Birth” attribute of Person
is in fact another object, one that can represent dates. An object’s attributes may
themselves be objects.

Let’s consider what the attributes of a Date object type should be. The
simplest scheme is to have three integers as attributes; one each for day, month,

There are other possibilities. Many computer systems handle dates by storing
the number of seconds since some known fixed point in time; this is a simple
scheme involving only a single integer and is cheap for a computer to store.
This simple internal representation is converted to a more human-friendly
format whenever it is displayed. The advantage of either of these schemes is
that the date is stored in a simple neutral form and can then be displayed in
whatever format the user chooses. The simple storage makes it easy to develop
programs that manipulate dates.

Methods
Displaying the date is an operation (or procedure) that uses an object. This
operation is obviously closely linked to the object and in a way it is also an
attribute of the object. It is however obviously a special kind of attribute since
it is a procedure (a set of steps or instructions) rather than just a single value.

“Attributes” like this are called methods. A method can be thought of as a
procedure that uses the values of the attributes of an object to produce some
useful result or effect. Possible methods for a Date object type might be:

● find the next date;
● find the next date and change the values of the object’s attributes to the

values of the next date;
● find the day of the week of the date;
● determine if the date is valid;
● display the date in the format DD/MM/YYYY;
● display the date in a format similar to “2nd January 2004”.

Some of these methods are also like attributes in that they generate a particular
value. Finding the next date presumably generates the value of another date
and determining whether or not the date is valid generates a Boolean (true or
false) value. This value is called the return value of the method. This return value
also has a type; this is usually called the return type of the method.

Some methods, such as displaying the date, do not return a value at all.
Usually they just display something on the screen or make some change to the
values of one or more of the attributes. These methods are called void methods,
and void is the keyword used in Java (and C�� for that matter) to denote them.

A more complete specification for the methods of a Date object could be as
follows. This version also adds in some names for the methods; the meanings
of these should be reasonably obvious and they are much less cumbersome that
the descriptions. Some of the methods in this list return a value while others are
void methods.

44 How to program using Java

Date

Attribute Type

Day Integer

Month Integer

Year Integer

and year:

This is far from a complete list and once again you can probably think of several
more possibilities. The precise list of methods for a Date object type to be used
in a program would depend entirely on what the program was intended to do.

Describing an object
Attributes and methods together define an object type. For example, a more
complete definition of our Date object type might be:

Objects. The building block 45

Date Methods

Method Name Return Value Return Type

Find the next date findNext The next date Date

Find the day of the findDay The day of the week String (or perhaps
week of the date an integer)

Find the next date advance Void (the value of an attribute is changed)
and change the
values of the object’s
attributes to the values
of the next date

Determine if the date isValid True if the date is Boolean
is valid valid, false otherwise

Display the date displayShort Void (there is output to the screen)
in the format
DD/MM/YYYY

Display the date in displayLong Void (more output to the screen)
a format similar to
“2nd January 2004”

Date

Attribute Type

Day Integer

Month Integer

Year Integer

Date methods

Method Name Return Value Return Type

Find the next date findNext The next date Date

Find the day of the findDay The day of the week String (or perhaps
week of the date an integer)

Find the next date advance Void
and change the
values of the object’s
attributes to the values
of the next date

Determine if the date isValid True if the date is Boolean
is valid valid, false otherwise

Display the date displayShort Void
in the format
DD/MM/YYYY

Display the date in displayLong Void
a format similar to
“2nd January 2004”

This definition describes all the attributes and lists all the methods available.
There is nothing else that this object type can store, represent, or do.

From the point of view of a programmer writing a program that would use
this object type, this definition specifies the names and types of the values stored
in any instance of the object type, and describes all the methods available. A lot
of information is provided about the methods; the specification provides their
names, what they return, and the type of that return value. This is all the
information needed in order to develop programs that use Date objects.

Object-oriented programming
You will probably have guessed by now that object-oriented programming is
programming using objects. This is a very popular and powerful way to write
programs; after all, the reason that Bjarne Stroustrup proposed the develop-
ment of C�� from C was to introduce object-oriented features into a language
that was already successful and popular. Java is one of the latest languages in
this development, and probably the most popular at the moment; it is a much
more pure object-oriented language than C��. These developments have also
been carried on with another language, C#. To see why this approach is so
popular, let’s look at how object-oriented programs are developed.

The first step in writing an object-oriented program is to identify the types of
the objects that will be used. This can often be done from a description of the
problem area and by discussing the problem with those familiar with it. We’ll
look at this important process in more detail in the next chapter. These object
types are specified in terms of their attributes and methods and then programs
are written to implement them. Finally the programs that use the instances of
these object types (these instances are called, unsurprisingly, objects for short)
are themselves written.

This is the power of object-oriented programming. If programs have been
written to implement a particular object type, the program code can be re-used
in many other programs that also make use of the object type. Programmers can
quickly build up libraries (or, in Java parlance, packages) of working object types
that they can use over and over again in many different programs. The savings
in terms of time and money can be enormous.

46 How to program using Java

Example 1 – Mr Martinmere’s nature reserve
Mr Martinmere is in charge of a small nature reserve that is home to ducks and coots.
He wants to develop some computer programs to help with the running of the reserve.
What object types will he need?

Mr Martinmere wisely plans to identify and then develop the object types to be
used in his programs first. He should find that the object types produced could
be used in all the programs he develops, and that he will therefore save a lot of
time and effort.

The two object types that he needs are fairly obviously Duck and Coot. There
are many possible attributes, so he would need to think a bit more about the
programs that he wants to develop and the information that they will process
and produce for him.

The attributes for the two objects would probably be almost the same; this
might suggest that one Bird object type would be better for this application.
A decision on which to use would depend on some further analysis of what the
programs will eventually do; will they have to distinguish between different
kinds of bird? The best choice for the object types would also depend on
whether there are any plans for developing more programs in the future and,
if so, what those plans are.

Some possibilities for the Duck object type are:

Objects. The building block 47

Duck

Attribute Type

Name String

Age Integer

Value Floating-point (representing money)

The Coot object type would be very similar, although differences might be
uncovered by discussing the requirements in more detail.

Example 2 – Bruce’s library
Bruce has a small library of books that he loans out to the ducks. Each duck is allowed
to have only one book at any one time. Bruce wants a computer program that will keep
details of all his books and will let him keep track of which duck has which book and
when it is due to be returned.

What object types would the program need? What would be their attributes and
methods?

Again it is fairly easy to identify the object types in this example. One will be
used for details of the books themselves and one for the borrowers. Even
though the borrowers are actually the same as the ducks in Mr Martinmere’s
program from the first example, the attributes will be different and so it is best
to use a different object type.

The two object types could, of course, be implemented together as the same
object type, presumably called simply Duck. The drawback with this approach
is that there are probably very few situations where ducks borrow books and
rather more where ducks are ducks. A general-purpose object could be used but
it would involve keeping a lot of attributes and methods that would not be used
in the vast majority of the applications that would make use of the object type.
At the same time there are many applications where things are borrowed and so
a more generic Borrower object type is likely to be of much more general use.

This chapter has already looked in passing at some of the attributes that a
book object might have. The ISBN attribute of the book object is very useful here
since it is guaranteed to be unique for every book. Similarly it would be a good
idea to introduce a “borrower number” for the borrower object type; two ducks

might well have the same name and this will save any possible confusion and
embarrassment. The Borrower object type might look something like this:

48 How to program using Java

Borrower

Attribute Type

Borrower number Integer

Name String

Book borrowed Book

Date due back Date

Two of the attributes of this object type are themselves objects. The book that
has been borrowed is a Book object and the date when it is due back is a Date
object as defined earlier in this chapter.

There would probably also be methods for borrowing and returning a book.
The return value from the method to return a book could be used to indicate
whether the book was overdue when returned:

Method Return Value Return Type

borrowBook Void

returnBook True if the book is Boolean
returned in time, false
otherwise.

Example 3 – Bruce’s slightly more complicated library
The ducks like reading but do not like having to make the long walk or flight to return their
books. Under pressure, Bruce agrees that each duck should be allowed to borrow up to four
books at any one time. How does this change the object types that have been identified?

When designing object types6 there is often more than one way. There is more
than one possible design and many of these possible designs will be suitable for
solving the problem at hand. There are no hard and fast rules; sometimes it just
comes down to a matter of the programmer’s taste or instinct.

Here is a simple way to extend the attributes of the Borrower class to deal
with the new requirement:

Borrower

Attribute Type

Borrower number Integer

Name String

First book borrowed Book

First date due back Date

Second book borrowed Book

Second date due back Date

Third book borrowed Book

Third date due back Date

Fourth book borrowed Book

Fourth date due back Date

6 And when writing computer programs generally.

There is nothing particularly wrong with this model.7 It stores the new data
well enough and the methods could be extended to record which book had
been returned.

An alternative approach involves the definition of a Borrowing object type.
This is an object that does not correspond with a physical object in the real
world but with an event. This is quite common. This object type would have
two attributes, the book borrowed and the date the book is due for return. The
Borrower object type would simply have as attributes four of these objects.

A final alternative building on this second idea is worth a mention. It would
be possible (and this is probably the neatest solution of the three) to define an
object type called Set of Borrowings. As the name suggests this would be
a collection of Borrowing objects. Each borrower object would have one of
these collections as an attribute; this is a far neater solution.

The object types in this scheme would be:

Objects. The building block 49

Borrower

Attribute Type

Borrower number Integer

Name String

Books borrowed Set of borrowings

Method Return Value Return Type

borrowBook Void

returnBook True if the book is Boolean
returned in time, false
otherwise.

Borrowing

Attribute Type

Book borrowed Book

Date due back Date

Set of Borrowings

Attribute Type

First book borrowed Book

First date due back Date

Second book borrowed Book

Second date due back Date

Third book borrowed Book

Third date due back Date

Fourth book borrowed Book

Fourth date due back Date

7 Well, there is. As we will see later (much later – Chapter 17!) this scheme would cause all
sorts of unnecessary complications.

4.1 Suggest possible attributes for an object type Student.

4.2 Suggest possible attributes for an object type Professional Footballer.

4.3 It is likely that some of the attributes you have suggested for Student and
Professional Footballer are the same. What does this suggest?

4.4 Suggest possible attributes for an object type Television Programme.

4.5 Suppose that the Television Programme object type were to be used in a
program to be used in a video recorder. What methods should be added to the
object type?

4.6 A program is to be written to provide details of footballers to a team of
match commentators over a season. What methods might be added to the object
type you have already defined?

4.7 Bruce plans to allow the ducks to reserve a book that has been borrowed
by another duck. What should be changed in the object types identified in the
third example?

50 How to program using Java

Objects lie at the heart of object-oriented programming. Java is an object-
oriented programming language. Java programs define and process objects that
represent physical objects or events in some real world problem. The first stage
in developing an object-oriented Java program is to identify the object types in
the problem and to write programs to implement these. These object types are
then used in the programs that are written to solve the problem.

An object type is used to represent a group of connected objects in a real world
problem. Individual instances of this object type (objects) are characterised,
usually uniquely, by the values of their attributes. Attributes are values of inter-
est; they have a type and can hold only one value. Attributes may themselves be
objects.

As well as attributes, object types also have methods. A method is a procedure
that processes the values of the attributes of an instance of the object type to
produce some effect. A method may or may not change the values of the
object’s attributes. Some methods will generate and return a value; others,
called void methods, will not.

A key principle of object-oriented programming is code re-use. When an object
type has been written for one problem area it can be re-used in another, ideally
with no changes. This has the potential to save a great deal of time and money.

You should now understand what an object is. It’s time to move on to look in
a little more detail at how the objects in a problem area can be identified.

Objects. The building block 51

52

The exercises in the previous chapter introduced you informally to the task of
identifying objects in a real-world problem. You should now have some
experiencing of suggesting the objects that might be used in a program to solve
some problem; you should also be able to make some suggestions for possible
attributes and methods of the objects you identify.

This chapter takes this a little further to suggest a framework that will allow
you to carry out this important task in a structured way. Before this book moves
on to describe features of Java, it is important that you realise the crucial impor-
tance of good program design. You must understand that, before any program
is written, the problem area should be carefully investigated and analysed and
the solution carefully designed. It can be a costly mistake to start writing a
program before you have properly understood the problem.

After reading this chapter you should have a basic idea of how to identify
possible objects and object types in a problem area. You should be able to take
a description of a problem and use it to create a list of object types, together
with their attributes and methods. You should be able to present this in a way
that would be useful to a programmer setting out to implement your solution.

A word on analysis and design 53

A computer program is written to solve a particular problem or to carry out a
particular task. Before this program can be written there are two important tasks
that must be carried out. First, the problem must be carefully analysed, and then
the solution must be designed. Sometimes more than one solution will be
designed to allow the programmers a choice. The activity of analysing a prob-
lem and designing a solution is normally called “Systems Analysis”, and those
who specialise in this task are called “Systems Analysts” or just “Analysts”. It is
common in today’s IT industry for the programmer and analyst to be the same
person (an “Analyst Programmer”) but this is not always the case.

This is not a book about systems analysis and so this chapter gives you only
a very brief insight into the area. At this stage you need to know enough about
analysis and design to allow you to make sensible choices as you write your
own programs. The activities of analysis, design, and programming are clearly
closely linked. You may well find out that you enjoy the analysis or design
aspects of developing programs more than the actual programming; that’s part
of what learning to program is all about!

Before you start on this chapter it is important that you understand that the
activities described in this chapter are normally best carried out a long way
away from a computer. Analysis involves studying a problem and talking to the
people who are affected by it and who understand it (remembering that these
two may not be the same!). Design is a pencil and paper exercise, with a
computer used, if at all, to do little more than help with drawing diagrams or
preparing documents. When you write programs you should never sit down in
front of a computer without a design at your side. You should have a clear idea
of what your program is going to do and how it is going to do that; this idea is
the main output of thorough analysis and design.

There are several stages to analysis and design. These are often described in
the form of a structured methodology, a formal way to carry out the various
tasks. There are many formal methodologies that can be used for analysis, and
you might well meet one if you study systems analysis further. For simplicity
this chapter does not describe a particular methodology; instead, you will find
a less formal approach in the form of a suggested set of steps to take. This
suggestion should be particularly suitable for new programmers.

54 How to program using Java

Identify Objects The first step is to identify the object types in the problem area.
In the spirit of code re-use it might even be the case that some of
these object types have been met before in previous programs, and
so working implementations for them may well already be available.

Identify Attributes The attributes that describe each object type are identified and added
to the definition. The type of each attribute is also identified; this
might lead to the identification of more object types that are found
to be attributes.

Identify Methods The methods are added.

Design Methods Each method is effectively a small program so each one is designed
separately.

Design Program Finally the complete program that will make use of the object types
identified can be designed. Only when this step is complete is the
program (or any of the methods, for that matter) actually written.

These steps will be illustrated by means of an example. Ready?

Identifying object types
This is the most fundamental step. The object types will be the basic building
blocks of the final program and it is crucial to identify the correct ones. A sim-
ple way to identify candidates for objects is to take a description of the problem
area and to extract all the nouns (or noun phrases); these are the words that
refer to “things” that exist in the problem. Such a description would normally
be a result of an interview with someone close to the problem.

To illustrate this, here is a description of a problem:

The nature reserve is situated just north of Liverpool. It is home to many valuable
birds. Mr Martinmere is the ranger in charge of the reserve and together with his
family he takes care of all the birds at the reserve. There are many ducks, many
coots, and two geese at the reserve. The ranger also has a dog, called Carlos. A
program is required that will assist with the administration of the reserve. The
ranger wants to be able to keep track of all of the birds; he needs to know the name,
age, and approximate value of each. If he sells a bird he needs to be able to record
this fact together with the name of the nature reserve he has sold the bird to. He
never sells the geese or his dog.

It’s easy to go through this description marking the nouns (here underlined):

The nature reserve is situated just north of Liverpool. It is home to many valuable
birds. Mr Martinmere is the ranger in charge of the reserve and together with his
family he takes care of all the birds at the reserve. There are many ducks, many
coots, and two geese at the reserve. The ranger also has a dog, called Carlos. A
program is required that will assist with the administration of the reserve. The
ranger wants to be able to keep track of all of the birds; he needs to know the name,
age, and approximate value of each. If he sells a bird he needs to be able to record
this fact together with the name of the nature reserve he has sold the bird to. He
never sells the geese or his dog.

This gives a list of things that might be objects in the final program.
Some of the nouns in the description are actually different names for the

same thing, so the next step is to remove synonyms to give a shorter list. At the
same time some of the words in the description don’t quite describe the potential
object fully and so the names should be refined to make them clearer:

● the nature reserve
● Liverpool
● Mr Martinmere
● ranger
● Mr Martinmere’s family
● birds
● ducks
● coots
● geese
● dog
● Carlos
● program
● administration
● name
● age
● approximate value
● fact
● name (of nature reserve buying a bird)
● nature reserve buying a bird

A word on analysis and design 55

Some of these can be eliminated at once. “program”, “administration”, and
“fact”, for example, are clearly nothing to do with object types. Proper nouns
can also usually be eliminated; they refer to a particular instance of an object
type that is very probably already covered elsewhere. Finally, some nouns will
actually be attributes of other objects; here “name”, “age”, and “approximate
value” clearly fall into this category. The list is now much shorter:

● the nature reserve
● Mr Martinmere
● Mr Martinmere’s family
● birds
● ducks
● coots
● geese
● dog
● nature reserve buying a bird

Information about the tasks to be carried out by the program will enable the
list to be trimmed further. “Mr Martinmere’s family” is only mentioned in pass-
ing, so that can be removed. Much the same goes for the ranger himself and the
reserve itself. Finally “birds” is a general term that covers the ducks, coots, and
geese; it can also be removed.1 This gives a final shortlist:

● ducks
● coots
● geese
● dog
● nature reserve buying a bird

The description also provides the information that the ranger would never
sell his dog or the geese. Given the nature of the program it might be reason-
able to leave them out, but then again the ranger might change his mind in the
future. Part of the analysis process would be to go back to the ranger and ask
for more details and a more detailed description of the problem. This would
allow a sensible and informed decision to be taken.

For the moment the assumption will be that neither is required; this seems
reasonable on the basis of the limited information currently available. The list
becomes:

● ducks
● coots
● nature reserve buying a bird

The final step is to choose the names for the object types. Singular names are
customary, so ducks becomes “duck” and so on. The current name for the object
type representing the reserves that buy animals is rather unwieldy; this could
be changed to simply “reserve”. The final list of object types in this problem

56 How to program using Java

1 This actually shows, of course, that there is an object type Bird in this problem and that it
is made up of three separate object types that represent particular types of bird. If we were
to find out that each type of bird had the same attributes it might well be possible to imple-
ment a single Bird object type that would contain an attribute to indicate the type of bird.

area is then:

● duck
● coot
● reserve

Identifying attributes
Finding the objects has provided a useful head start in finding some of the
attributes. A check through the discarded candidates for objects reveals
“name”, “age”, and “approximate value”, all of which are attributes of the
Duck and Coot object types. It’s likely that they are also attributes of the other
two discarded animal object types (geese and dog) as well, but this would only
be relevant if these were to be implemented.

There is less to go on in the description for the attributes of the object type that
will represent the other nature reserves who buy the birds. In practice an interview
would again be used to determine these, but a reasonable guess for them would
be to include attributes such as “name”, “address”, and “telephone number”.

Finally, there is a requirement to record the identity of the reserve to which a
bird was sold. This can be introduced in two ways; either an attribute “buyer”
can be added to the Duck and Coot object types, or an attribute to represent the
birds bought by each of the other reserves could be added to the Reserve
object. There is no good reason at this stage to believe that either of these
possibilities is better than the other; the choice could be left to the final pro-
grammer or might be determined when some more details of the requirements
of the final program are known.

The types of most of the attributes are straightforward to establish. The only one
that might present a choice is the telephone number of the reserves. It might seem
at first sight as if this should be an integer, but a string is probably to be preferred.
Telephone numbers are traditionally written with spaces to make them more
memorable and often begin with a 0; handling these values sensibly would be
very difficult to achieve if the number were stored as an integer. It is also unlikely
that the final program would need to perform arithmetic on a telephone number
(an operation on integers), but it is possible that the program might need to extract
certain digits from the number (an operation on strings). A string is best.

Finally the names of some of the attributes could do with some simplifica-
tion; in particular “approximate value” should be simply “value”. This gives
the final set:

A word on analysis and design 57

Object Type Attribute Type

Duck Name String
Age Integer
Value Floating-point
Sold to Reserve

Coot Name String
Age Integer
Value Floating-point
Sold to Reserve

Reserve Name String
Address String
Telephone number String

Identifying methods
The task of identifying the methods of the object types involves returning to
the description of the problem area. This time the focus is on the purpose of the
final program; it is vital that the object types have sufficient and correct
methods to support this. In particular the analyst should be looking for
any transactions that will change the values of any attributes of any instance
of an object type. Transactions often show up as events in the problem
description.

In this example there is only one obvious candidate; the ranger sells a bird.
This transaction would change the value of the “sold to” attribute of the object
instance representing the appropriate bird; it is therefore a method of both
object types representing birds, Duck and Coot.

The description also contains the information that the ranger “needs to know
the name, age, and approximate value” of each of his birds. This suggests two
things; that methods will be needed to display this information to him in some
neat format and that methods will be needed to change this information. It
seems reasonable to assume that the name of a duck never changes, so methods
will be needed only for age and value.

The Reserve object type has no obvious methods. The only possibilities
seem to be methods to change the values of the attributes, but there is no evi-
dence that this would be a common requirement. This is another example of
something that would have to be confirmed with a further interview.

Of course Mr Martinmere will also want to use the information about his
birds for many other purposes. He might want to display lists of all his birds or
find all the birds of a certain value. These are not, however, methods of the
object type; they operate on collections of objects and not on individual objects.
These are functions that would be carried out by programs that use the objects
and they should be left to the programmer to implement.

This analysis gives the following collection of methods for the Duck object
type. The methods for the Coot object type are the same as those for Duck (and
so it would be a sound idea to give them the same names), and the Reserve
type has no methods.

58 How to program using Java

Object Type Method Description Result Result Type

Duck display Displays details of a duck Nothing, just Void
in a neat format. display on

screen.

sell Records that a duck has Nothing, Void
been sold and stores the underlying
name of the reserve values are
buying. changed.

changeAge Changes the duck’s age. Nothing, Void
underlying
values are
changed.

changeValue Changes the value of a Nothing, Void
duck. underlying

values
are changed.

Designing the methods
Each method must now be designed. This involves specifying the effect of
each method in detail. It is normal to use a structured format for writing this
involving the specification of:

● the purpose of the method
● the inputs of the method
● the values that are changed by the method
● any side effects (such as output on a screen or changes to a file of data) that

the method may produce

The format of this information should be fixed and, in practice, might well be
recorded on some suitable form.

For example, the specification for the display method of the Duck object
type would be:

Name: display
Object type: Duck
Purpose: Displays the details of a duck on the screen
Inputs: a Duck object
Values Changed: None
Side Effects: Display on the screen

This specification would be extended in the final design process to include a
precise description of the layout for the display; this might well make use of
a diagram. In practice it is likely that the analyst would use some sort of form
to record the specification for the programmer.

The sell method has an input; the programmer must provide a reference to
the reserve to which the duck has been sold. This method also carries out a
rather more complicated task than simply displaying the values on the screen,
so a more lengthy description of its effect would be provided:

Name sell
Object type: Duck
Purpose: Records that a duck has been sold
Inputs: a Duck object and a Reserve object
Values Changed: "sold to" attribute of the duck
Side Effects: None
Description: The value of the "sold to" attribute of

the duck should be changed to store the
Reserve object provided. If this value
already indicates that the duck has been
sold an error message should be displayed
and no changes should be made

Obviously this detailed description can become very complex. Worse than that
it can be very hard to write it with precision; if the programmer misinterprets
what the analyst has written the final program will not work as expected.

For this reason it is useful to be able to write the description out in a slightly
more formal and unambiguous way. The normal way to do this is to write in a
form of pseudocode. This is a form of language that is much more terse and
precise and is, in fact, quite close to a computer programming language. There
are no hard and fast rules for writing pseudocode (although some software
companies may have a preferred or recommended style), except that anything

A word on analysis and design 59

written should be clear and unambiguous. The description of the processing
carried out by the sell method could be written in pseudocode as:

IF the value of "sold to" is blank THEN
Set the value of "sold to" to the Reserve object

OTHERWISE
Display an error message – the duck is already sold

END IF

Armed with the pseudocode, the programmer will be in no doubt about the
analyst’s intentions. It is good practice to write out all but the very simplest
methods in this way before writing them in actual program code.

Designing the program
With the object types designed, the program or programs that will use them can
also be designed. As with the design of the methods, once the purpose of the
program has been specified it is usual to describe it more formally using
pseudocode.

One program that is clearly needed is one that will allow Mr Martinmere to
record the sale of a duck. This would presumably ask him to enter the name of
the duck and the name of the reserve buying and would then make the required
changes in his records. The pseudocode for this might be:

Display "Enter the name of the duck:"
Read Input and store as theDuck
Display "Enter the name of the reserve:"
Read Input and store as theReserve

Use sell method of duck object to record sale

This simply and unambiguously specifies the method and tells the programmer
precisely which other method to use.

As another example, suppose that Mr Martinmere decides that he wants a
program that will display the details of all his coots. This program will have to
process and display the details of each coot in turn, using the display method.
This could be expressed in pseudocode:

Get the details of the first coot
WHILE there are coots left
Display the details of the coot using the display method
Get the details of the next coot

END WHILE

Design of anything more than simple programs will have to wait until you
have learned more of the details of programming. For the moment you should
just appreciate the importance of design and the great importance of expressing
the design in an unambiguous way.

Analysis and design
This example has shown how a description of a problem can form the basis of
an analysis of a problem area. This analysis leads to a design of a solution. The
approach suggested here is a simple methodology that you should follow
whenever you come to develop a new program.

60 How to program using Java

Since this chapter included one long example there are no extra examples this
time. On with the exercises!

A word on analysis and design 61

5.1 Identify the object types that would be needed in a solution to the follow-
ing problem. For each object type you identify, suggest attributes and methods.

The ducks on Mr Martinmere’s farm have taken up cricket. They have formed
themselves into four teams and are organising a knock out competition. They
have asked Bruce and Zoot to be umpires. Elvis has been asked to write a program
to record which duck is in which team and to keep a record of the results of the
matches.

5.2 After the success of their first competition the ducks decide to organise a
league. Each team plays each other and two points are awarded for a win, one
for a draw, with none for a defeat. Elvis is asked to write a new program. How
does this change the design of the object types?

5.3 Elvis has a file containing the results of all the matches in the league. Use
pseudocode to design a program that would process the file to discover how
many points each team has got so far. You can read through the file many times.

5.4 Express the following description of a program in pseudocode. Assume
that the program uses a Book object type that has an attribute “borrowed by”
storing the duck that had borrowed the book.

When a book is returned Bruce enters the name of the duck and the title of the
book. The program finds the information about the book and records the fact that
it is back in the library.

5.5 Examine the job advertisements in a computing trade newspaper such as
Computing or Computer Weekly. Note down the job titles for all the jobs relating
to programming. How many jobs are offered as Programmers? As Systems
Analysts? As Analyst Programmers? What salaries does each job seem to attract?
What are the different skills or experience requirements for each type of job?

62 How to program using Java

Before any program can be written the problem that it is to solve must be
thoroughly analysed, as must the area in which the problem exists. This analy-
sis, which is often carried out by a Systems Analyst, forms for the basis of the
design of a solution. The programmer works with this design to produce the
final working program.

The first stage in the analysis is the identification of the object types that will
be used in the program. Their attributes and methods are also found and the
methods are designed. This design normally makes use of pseudocode to
ensure that it is unambiguous. The ambiguity that can result from the use of
normal natural written language is best avoided. The use of pseudocode is also
usual and useful when designing programs.

Thorough analysis and design is essential before programming can start.
Now that you’ve appreciated that you’re getting closer to doing some actual
programming! As a first stage we’ll look at how one of the object types we’ve
identified in this chapter can be implemented as a Java class.

63

Java is big. As you learn more about it you will come to realise just how true
this is. Java is a truly general-purpose programming language; you could use
a program written in Java for just about anything from flying an airliner to
keeping track of numbers on a mobile phone. This is good, because you are
going to learn a powerful language with many useful applications. But it is also
bad because it’s difficult to know where to start. There really is a lot going on
in even the simplest Java program.

This chapter is your start with Java. This chapter provides you with a quick
tour of the basic Java that we’re going to learn about in this book. This is not
all the Java in the book, and certainly not all the Java that there is, but it’s a
reasonable start. At this point I’m going to gloss over some of the details; the
idea here is to give you a general feeling for what’s going to come later.

In the last chapter we identified object types in a problem area. We identified
their attributes and the types of those attributes. We also found some of their
methods and used some pseudocode to design how these might work. Now is
the time to see how some of these things look in Java.

64 How to program using Java

To start, let’s recap the object type that we will model in Java in this chapter. The
type is to be used to store the details of ducks on Mr Martinmere’s reserve. You
might want to go and check over the full details of this object type’s attributes
and methods at the end of the last chapter.

To keep things nice and simple we’ll just worry about three attributes – name,
age, and value. The types of the first two are easy to identify, and a string and
integer respectively will be fine. The type to be used to store the value is slight-
ly more complicated; this is actually an amount of money (and as such follows
some special rules such as only having two places of decimals) but there is no
handy type for that in Java. So we’ll make do with using a simple floating-point
value for that.

We’ll also content ourselves with just three methods. There will be methods
to display the duck’s details in some neat format, and to change the duck’s age
and value. Again, the details of these are defined in the last chapter.

If we were to be implementing one of Mr Martinmere’s programs we would
obviously need to be able to process an instance of this object type. One instance
would presumably represent one “real world” duck. Of course, the point of
object-oriented programming is that the implementation of this object type could
be used unchanged in any program that Mr Martinmere might want now or
in the future. For that matter the object type could be of use to anyone who
wanted to write a Java program that processed basic details of ducks. We must
therefore implement1 the object type before we start on any of the programs. First
we will need some basic Java; about the most basic are declarations and statements.

Declarations and statements
We know that the first step in writing a Java program is to define the object
types that will be used. An object type is called a class in Java (and in most other
object-oriented programming languages as it happens), so that’s the name used
in this chapter. A class is defined, not surprisingly, using Java declarations and
statements.

A declaration simply “declares” that something exists in the problem area.
It probably specifies what this thing is called, what sort of thing it is, and also
provides some other information determined by what is being described. So, in
Java, this declares that an integer (abbreviated to int) exists:

int age;

A string and floating-point value look similar but use less obvious (or more
subtle) names:

String name;
double value;

String refers to the required string, and has to start with a capital letter.2

double refers to a floating-point number, with “double” referring to the preci-
sion that will be stored. This is basically the amount of computer memory that
will be used to store the value; you can think of it as the amount of memory
available to store the decimal places for a floating-point number. Your Local
Guide might tell you how much is used on your system.

These declarations do not really do anything, or at least they do nothing that
a user of the program might see. Behind the scenes some memory is allocated
to store the value, and various things will be done to associate a name with
the memory, but nothing happens as far as someone using the program is
concerned.

A statement is a line of Java that achieves something useful. It might set a
value or display something on the screen for example. This would set a value
by assigning the value 10 to the attribute age:

age = 10;

A first look 65

1 And, as we will see, also test.
2 And that is the first thing that I’m going to gloss over! If you must know, it’s because

String is a class itself in Java, but the other two types aren’t.

and this would display a welcoming message on the screen:

System.out.println ("hello, world!");

The punctuation in all these lines so far is important. They all end with semi-
colons, which effectively mark the end of the line. Lines can spread over more
than one line of a program, so the semi-colon is important. This, for example, is
strange but allowed:

System.out.println
("hello, world!");

because the semi-colon clearly marks the end of the statement. This, on the
other hand, is an error:

System.out.println ("hello, world!")

because there is no semi-colon. The Java system would assume that the next
line in the program was also part of this line, and all sorts of terrible things
would happen.

In a way, that’s all there is to it! A class definition in Java is simply a collec-
tion of declarations and statements. The declarations declare the attributes of
the class and statements are used to implement the behaviours of the methods.
A program is much the same thing, of course.

It is a feature of programming that the syntax of the languages used has
to be precise. When writing other languages you are probably used to being
allowed some flexibility; you can usually make mistakes and get away with it.
I can potato make a mistake in a sentence and you will still understand what
I’m saying. I can mispell a word and you can still understand this sentence.
Programming languages don’t allow the programmer as much room for
manoeuvre. So this is fine:

System.out.println ("hello, world!");

but this is an error which would mean that the program would fail to compile:

System.out.prntln ("hello, world!");

You are going to have to get used to this precision. It can be very frustrating at
first, and it does take a bit of getting used to.

Attributes
We now have enough Java to define the attributes of the class. The three
declarations are:

String name;
int age;
double value;

The values of these attributes will store everything that we know about a par-
ticular duck. Later on we will see that it’s important that the values of these
attributes are protected from changes made in error by badly written programs.
Programs will be able to change the values of course, but only on the terms

66 How to program using Java

that we set. We want no negative values for age! For this reason we define the
attributes of the class as private to the class, so:

private String name;
private int age;
private double value;

That’s all there is to it.

Methods
In contrast the methods are the public face of the class. Methods will be used to
allow access to the values of the private attributes; this will include changing
them as well as retrieving them and displaying them. Before worrying about
the intricacies of this, let’s get together the statements for a simple method.

The first method in this example does little more than display the values of
the attributes in some neat format. We have seen the Java for displaying a value:

System.out.println ("hello, world!");

which would display the text between the quotes as shown:

hello, world!

This can also be used to display the value of an attribute. The trick is to leave
the quotes out. So this:

System.out.println (name);

would print whatever string was currently stored in that attribute. The state-
ments to print out the values of the attributes of a duck are then just:

System.out.println (name);
System.out.println (age);
System.out.println (value);

This is admittedly not very neat, but it will do for now. It would also be a good
plan to provide a user with some information on what the values represent.
This is another simple statement (with quotes needed this time), and completes
the statements needed for this method:

System.out.println ("The details of the duck are:");
System.out.println (name);
System.out.println (age);
System.out.println (value);

Now the method needs a name. display would seem a reasonable choice. A
method also has to be declared. In the last chapter we saw that this involves
specifying the name of the method and the type of the value that it returns. This
simple method will return nothing at all (so it is a void method), which in Java
is represented as void. The method can now be declared:

void display

Remembering that it is public:

public void display

A first look 67

Finally, some methods take values to process (the other two in this example
will), and these are listed in brackets the declaration. There are none here, so the
full declaration is:

public void display ()

No semi-colon this time!
The method is completed by adding in the statements. They are written

between a pair of curly brackets usually called braces, and are indented slightly
to show someone reading the program that they are inside the method. We now
have a complete method:

public void display ()
{
System.out.println ("The details of the duck are:");
System.out.println (name);
System.out.println (age);
System.out.println (value);

}

The remaining two methods are slightly more complicated. The extra com-
plication is that they change the value of an attribute. They therefore need to
know what the new value is. For this example we’ll assume that the value they
are provided with is valid, so we’ll ignore the problem of an age being negative,
for example.

Values provided to methods are called parameters and are listed in the brack-
ets in the method’s declaration. This list includes the name of the parameter and
also its type; the parameter can then be used inside the method, just like the
attributes.

The second method is intended to alter the value of the duck’s attribute
storing its age. A reasonable name for it would be setAge. It is going to need
to know what the new age is, and therefore it needs one parameter, an integer
representing the new age. It doesn’t return a value, so the return type will once
again be void. Apart from this its declaration is much the same as the simple
display method:

public void setAge (int newAge)

The only statement needed in the method is one to set the value of the attribute
age to the value of the parameter (newAge). We’ve seen a statement to set a
value at the start of the chapter, so:

age = newAge;

will set the value of the attribute age to the value found in the parameter
newAge. Behind the scenes the value in the memory location storing newAge
will be found and will be used to replace the value in the memory location
storing age.

And the complete method now becomes:

public void setAge (int newAge)
{
age = newAge;

}

68 How to program using Java

Happily, the method to set the duck’s value is pretty much just the same. The
only difference is that the parameter is now a floating-point number and that
the name of the attribute and parameter have changed.

public void setValue (double newValue)
{
value = newValue;

}

We now have all the methods to go with the attributes. All that remains is to
combine them into a definition of the class.

Defining the class
The Java files that contain definitions and programs have a fixed structure and
format. For this example we’re only defining a class, but the structure would be
much the same if we were writing a program. Once again this format is fixed;
the programmer has some flexibility with the precise details of layout, but there
are strict rules that have to be followed.

A Java file can be rather long. It can also be difficult to interpret, especially if
it has to be read by a programmer who did not originally write it. It is therefore
usual (and a good idea) to start each file with some comments to describe the
files’ purpose. A comment is part of a program that is intended only for a human
reading the program; comments are always completely ignored by the compiler.

There are two ways of writing comments in Java. The first is to enclose the
comment between two symbols:

/*
This is a class that can be used...

*/

The compiler will happily ignore anything it finds in the program after the first
/* and before the corresponding */. This style of comment is usually used for
long comments that extend over several lines. The alternative is to use the //
symbol to mark that anything to the right on the line is a comment. This would
look like this:

System.out.println ("hello!"); // Print a greeting

The choice is really just down to the style of the programmer,3 but the style in
this book is to use the first choice for long comments that span over several lines
and the second for shorter comments that might relate to a single line.

One place where there should definitely be a long comment is at the start of
the file. This comment should explain what the class or program in the file does,
and should also provide useful information such as the name of the author. In
time it might also record any changes made to the program.

Before adding a comment we need a file to add it to! Java has rules about the
names of files, so we don’t have very much choice about the name. The class
is called Duck, and if a file contains the source code for a public class, then the
filename must be the name of the public class followed by a .java extension.
In the course of this book, we will only encounter public classes, but it is worth
mentioning that in more advanced projects, you may well find .java files

A first look 69

3 We’ll talk more about programming style later on.

containing more than one class – most will be private classes, and at most one
will be public.

So, given that our file contains the source code for the public class called
Duck, our file is named Duck.java; your Local Guide should tell you all you
need to know about creating and opening the file.

The file starts with a comment (called a header block) that contains the
required useful information:

/*

Duck.java
A simple Duck class for the "First Look" chapter.

AMJ
22nd January 2003

*/

Now to add the definition of the class. This starts with something that looks
very like the definition of an attribute. A class is obviously going to be public
since programs will need to create instances of it:

public class Duck

The remainder of the definition consists of the attributes and methods,
enclosed between braces. It is usual to list the attributes first, followed by the
methods. Short comments are used to explain exactly what each component is.

That’s almost it. The definition of the attributes and methods of the Duck
class now looks like this:

public class Duck

{

// Attributes

private String name;
private int age;
private double value;

// Methods

public void display ()
{
System.out.println ("The details of the duck are:");
System.out.println (name);
System.out.println (age);
System.out.println (value);

}

public void setAge (int newAge)
{
age = newAge;

}

public void setValue (double newValue)

{
value = newValue;

}
}

70 How to program using Java

The indentation of the file shows clearly what is contained inside the class. It is
always a good idea to make sure that corresponding pairs of braces line up, as
has been done here.

The final thing that needs to be added is a special method. When an object is
declared in a program there are many things that need to be done; one is that
some memory must be allocated to store the values of the attributes. This is
done by a special method called a constructor. The constructor takes care of
whatever is needed behind the scenes to create a working instance of the class.
It can also be used to set some default values if these are appropriate for the
attributes.

This might sound complicated, but it isn’t. All the memory allocation is done
automatically so the only thing that really concerns us is default values. Java
will provide sensible default values for the built-in types (0 for numeric
types, for example). Assuming that these are good enough for this case (and
there seems no reason why they wouldn’t be) the constructor can be left empty.
In the definition of the class the constructor appears as a method with the name
of the class. So we just need to add:

public Duck ()
{
}

to make the class complete. This can be added together with some comments at
the top to give the final version:

/*
Duck.java
A simple Duck class for the "First Look" chapter.

AMJ
22nd January 2003

*/

public class Duck
{
// Attributes

private String name;
private int age;
private double value;

// Constructor

public Duck ()
{
}
// Methods

public void display ()
{
System.out.println ("The details of the duck are:");
System.out.println (name);
System.out.println (age);
System.out.println (value);

}

public void setAge (int newAge)
{
age = newAge;

}

A first look 71

public void setValue (double newValue)
{
value = newValue;

}
}

Defining a class
This definition of a class is now ready to be used in a program. Of course, it
should be tested first so that any problems in it were prevented from causing
any problems in the program. Once it was tested and found to be working it
could be used in any program that needed to use the Duck object type.

72 How to program using Java

There are no examples of this type since this chapter was one long example. You
could now find many more examples by looking quickly through the remain-
ing chapters of the book and looking at the Java you find there. You will hope-
fully find that you can understand quite a bit of it. You should certainly find
that the format and layout of the programs now looks familiar, and you can
probably understand a fair bit with the help of the comments.

You should also find that you can take the class definition from this chapter
and try it out on your own Java system. Can you make it compile?

6.1 The last chapter also identified a Coot class. It had the same attributes
and methods as the Duck class. Write out its definition.

6.2 There was also a class for storing details of “Nature Reserves”. Write out
that definition.

6.3 Take both these definitions and type them in using your Java system.
Make sure that they compile and correctly produce a .class file for each.

6.4 The methods in this class that set a value did not validate the value
provided. What problems might this cause?

6.5 The constructor for the class did not set any special default values. What
would good default values for the three attributes be?

A first look 73

4 Well, only one public class. Don’t worry about it.

This chapter has been a very quick look at quite a lot of Java. There are a lot of
new ideas and concepts in this chapter. They’re ideas that we will be meeting in
much more detail in the remainder of the book, but hopefully you’ve now got
a general idea of how an object type is defined in Java.

An object type in Java is called a class. It is implemented in a file which must
have the same name as the class (it follows that only one class can be imple-
mented in a file, by the way4). The class consists of a private part and a public
part; it is usual to put the attributes the private part and the methods in the
public part. A file defining a class should always start with a clear comment
explaining the purpose of the class and other comments should be used in the
file to explain what is going on. A complete class definition file should compile
without errors to produce a .class file.

This chapter has raised a few issues about layout and style in programming
so, before we get into more Java, the next chapter explains why good layout and
style are so important …

74

Programming (don’t panic!) 75

The time has come when you are almost ready to start using Java to write some
programs. Before you do, though, you need to understand something about the
process of programming. Programming is a highly structured process; some
might even call it a discipline. Good programming requires that the program-
mer adopt a sensible, structured, and measured approach. Above all it requires
that the programmer doesn’t panic!

After reading this chapter you should understand why a structured approach
is essential when writing programs. You should appreciate the importance of
always applying good consistent style and layout when you come to write your
own programs. You will have met the five golden rules of good programming
practice and style. Finally, after a long wait, you will also have seen your first
complete Java program that actually does something.

Suppose that you were about to build a new house in the middle of a large
empty field. This is one strategy that you might use. You could make a list of all
the things that you would need; you would include bricks, cement, wood,
paint, windows, and so on. Then you would buy them and arrange them in a
huge random pile in the middle of the field. Over the next few days you would
poke around at the pile and sort them out and arrange them into a house.

This strategy might just work but many things might go wrong. You might
put the bricks on top of the windows and break them, or you might lose the
paint under a large pile of wood. The risks of disaster are so great that in prac-
tice you wouldn’t seriously consider using an approach like this.

Suppose that your car was broken and you took it to the garage for repairs.
You would expect the mechanic to listen to your description of the fault and
then spend some time diagnosing what exactly was wrong. When the fault had
been identified you would expect a quick and easy repair. You would certainly
not expect the mechanic to spend time randomly replacing parts of your car

76 How to program using Java

until it worked again. This random approach would probably work, but is far
from the cheapest or most efficient way of repairing a car.

These two examples highlight tasks where a structured and methodical
approach is essential. You will not be surprised to learn that programming
is another such task. There is a set of steps that must be followed, in order,
when any program is written. Failure to follow these steps is a sure recipe for
disaster. Much the same applies to following the steps in the wrong order
or jumping randomly between them.

These two examples of building a house and repairing a car are based on two
approaches that new programmers sometimes adopt. Some will create a pro-
gram of many hundreds of lines before starting to see whether it works or even
whether it compiles. Faced with errors, some will then start randomly changing
random parts of this program until it works. Either way, these are things that
an experienced programmer would never do, and the best idea really is to make
sure that you never do them!

Writing a program
A user who requires a new program will expect a programmer to go through a
process that is very similar to that you would expect from a car mechanic. The
first step is to carry out an analysis to acquire a thorough understanding of the
problem. This is followed with a design of the most appropriate solution, which
is then quickly and efficiently implemented as object types and programs. It
would be a huge mistake to start writing the program before the problem had
been fully investigated and understood. It would be equally foolish to start
writing the program before it had been properly designed.

The process of writing the program itself follows a similar pattern. The first
stage is to implement the object types that will be required. These are tested
fully in isolation so that the programmer is sure that they work correctly. Only
when they have been thoroughly tested should they ever be used in a program.
Once again it is extremely foolish to start writing a program that uses some
object types before the object types have themselves been written and tested.
Such a mistake would only lead to a great deal of extra and unnecessary work
as more and more errors had to be located and corrected. And worse, if a
program is written before the object types have been fully tested it is very diffi-
cult to know for certain if the errors are in the program or in the object types
themselves.

Even the production of the program code itself follows the same pattern.
The code should always be developed in a steady incremental manner.
Functionality should be added to the program very gradually, and any new
function should be tested and shown to work before any further development
is attempted. Build the house one storey at a time, and make sure that the
bottom one won’t fall down before you start upstairs.

Sometime in the future you will be writing a program and you will not be
able to get it to work. You will have the chance here to make a huge mistake.
You will have the chance to ignore this problem and then starting to work on
some other part of the problem. If you do this you are only making worse trou-
ble for yourself! Never start working on a different part of the program when
you find that you can’t go any further in one area. Find some help and sort out
the first problem.

Programming (don’t panic!) 77

The first golden rule is:

Work on one part of a program at a time. Get it right and then go on to the next
one. Never work on many parts of a program at once!

As you learn to program you will probably get the chance to see some experi-
enced programmers at work. One thing that you will notice is that they have to
deal with many fewer errors from the compiler than you seem to. This is only
natural; you are bound to make more mistakes as you learn. At the same time,
though, the experienced programmers are doing some things that will make
sure that they have as few errors as possible to find and correct.

An experienced programmer will compile the program many times before it
is complete. Sometimes this will just be to check that the syntax of the program
so far is correct, and other times this will be to quickly test some new function.
An experienced programmer will never, ever, type in a complete program and
then start to force it to compile. If you choose to adopt an approach like that you
have made a very big mistake; you have chosen the best way to make sure that
you waste time and get practice in correcting as many errors as possible. It is in
the nature of programming that a simple error at the top of a program file
(something as insignificant as a single semi-colon) can cause errors throughout
the program; remember the precision that we saw in the small amount of
Java in the last chapter. If the program is several hundred lines long this will be
several hundred errors, but if the program is only ten lines long there will be far
fewer. It is always best to find such errors in very small programs, before their
effects become so big as to obscure the original cause. For one thing there are
many fewer places for the error to hide!

You will come to need to compile your program just to check the syntax less
and less as you gain more experience. As you are just starting out you should
remember to compile your program, if only just to test the syntax, every time
you add around twenty lines to it.

The second golden rule is:

If you have added twenty lines to your program, finish the part you are
working on, compile it and check that your syntax is correct. Fix any errors before
you carry on.

Style
A particular aspect of programming is a programmer’s style. Every program-
mer has a personal style in writing programs, something that is probably
unique to each individual. It’s much the same thing as handwriting; you can
probably recognise your own handwriting even if you wrote something many
years ago. A programmer can probably recognise a program that they wrote
many years ago.

Any programmer would hope to be able to take a program that they had
written many years previously and make changes to it. Many programs remain
in use for a very long time and changes often have to be made many years
after the program was first written. Of course sometimes the original program-
mer will not be available to make the changes. In this case a different programmer
must be able to take the program, quickly understand it and then make
the required changes. This is much more complicated to achieve if the program
is written in a poor style. Poor style can make even the most useful program

78 How to program using Java

totally impenetrable to even the best programmer. Good style is an essential
feature of good programming.

As you learn more and more you will come to develop your own style. Like
handwriting, style is very much a matter of taste; you will start to think that
certain parts of a program look better to you if laid out in a certain way and you
will start to adopt that style. All the programs in this book are written in the
style that we are happy with.1 I’m not suggesting that this is a particularly good
or bad style, but it’s the one that we have developed over many months and is
something that we are reasonably happy with. You are free to copy it as you
learn, but you will probably eventually adapt it as you develop your own set of
preferences.

There is no such thing as a good or bad style, as long as the style follows some
basic rules. It is essential that any style is consistent. If a programmer chooses
to use a particular way of laying out a particular part of a program the pro-
grammer should use precisely the same layout every time they write a similar
piece of program. As a first example, here is a very simple Java statement:

number = 1;

That line is laid out as I would do so were I writing a program. There is a space
before and after the equals sign, and no space before the semi-colon. Other
programmers, including many of those that I have worked with, might write it
like this:

number=1;

with no spaces, or even:

number = 1 ;

with a space before the final semi-colon. None of these styles is better than the
others; the programming statement is perfectly clear in each case and it will
obviously do the same thing in each case. What is crucial is that a programmer
choosing any of these three styles should use the same layout in every similar
statement. It should be obvious that a program that contained a section like this:

number = 1;
anotherNumber = 2;
aThirdNumber = 3 ;

is an example of very poor and inconsistent style. It’s a bit like writing a section
of a book in normal text, ANOTHER IN BLOCK CAPITALS, and some more
in italics for no good reason. This does not look good, and does not give the
impression that the programmer (or author) has paid attention and taken pride
in their work.

For the moment it probably does make sense for you to follow the style of the
programs in this book. The only exception to this would be if you were required
to follow another for some reason; perhaps the course you are following expects
you to use a particular style. Whatever you do, make sure that the style you
follow is consistent.

1 Now, you might well be thinking that two people wrote the programs in this book, so
what did they do about style? We negotiated, and arrived at a style that we were both
reasonably happy with. We then both wrote the programs to conform to it. Sometimes
programmers have to program to conform to another style, as we will see.

Programming (don’t panic!) 79

The third golden rule is:

Whatever style you use, make sure that it is clear and neat. Remember that
someone may later have to change your program without your advice.

As well as being consistent, a programming style needs to be easy to read.
In Java, remembering that the semi-colon is what marks the end of the line, the
example statement above could be written:

number
=
1
;

or even:

number = 1 ;

Hopefully it is obvious why these two are not good examples of style! Once
again you are free to follow the style of the examples in the book, or you are
welcome to develop and adopt the style to something that you prefer.

Sometimes software companies will require their programmers to write pro-
grams using a particular style, often called a “house style”2 and enshrined in a
hefty document labelled “Coding Standards”. The reasons for this are sound;
it ensures that all programs written in the company are consistent in style and
so increases the chances that programs will be quickly understood by other
programmers. Many programmers do not like working to such restrictive
guidelines; programming is an essentially creative process and such strict con-
trols reduce the chances for creativity. It is possible that you are required to
write your programs to conform to some house style; if you do then you will
have to adapt the programs in this book to fit the style.

The fourth golden rule is:

As you program, adopt and apply a consistent style. As you learn more, develop
this style to something that you feel confident and happy with.

Indentation and layout
A particularly important aspect of a program’s style is the way that it is laid out.
In the same way as a page of a book or magazine can be laid out well or poor-
ly, so can a program. A program’s layout can add a great deal of meaning to a
human reader. The layout is quite irrelevant to the compiler, which will simply
ignore it, but it can be extremely useful to a human trying to read and
understand the program.

Layout can emphasise which parts of the program serve a connected
purpose; for example, blank lines might be left in a program to show the
connection between certain lines or something about the program’s structure.
A crucial aspect of layout is indentation, where spaces are left at the start of lines.
The indentation of a program can show a reader a great deal about the
program’s structure.

As an example, here is the definition of the simple Duck class from the previ-
ous chapter. At the moment you probably won’t remember every detail of what

2 Effectively, you see, we adopted a house style for the programs in this book.

80 How to program using Java

it does, but that’s not the point. Just concentrate for now on the way that it’s laid
out. All you really need to remember at the moment is that the lines that start //
and the sections marked off with /* and */ are just intended for the human
reader; they are comments and are completely ignored by the compiler.
Comments are used to explain how a program works; you should find that by
reading them you are able to see what this Java defines even if you don’t under-
stand all the tricky little details of the Java itself.

/*
Duck.java
A simple Duck class for the "First Look" chapter.

AMJ

22nd January 2003
*/

public class Duck
{
// Attributes

private String name;
private int age;
private double value;

// Constructor

public Duck ()
{
}

// Methods

public void display ()
{
System.out.println ("The details of the duck are:");
System.out.println (name);
System.out.println (age);
System.out.println (value);

}

public void setAge (int newAge)
{
age = newAge;

}

public void setValue (double newValue)
{
value = newValue;

}
}

Hopefully you will agree that this class definition is set out quite neatly.
There are blank lines separating the parts of the definition that have different
functions and generally separating the various lines of the definition. The
indentation is also important; the first ‘{’ and the last ‘}’ (called braces) mark the
start and end definition so all the statements inside the definition are indented
by the same number of spaces (I usually prefer to use 2) to emphasise this.

So in this definition all the statements that make up the definition are
enclosed by a pair of braces to denote its start and end points. Statements inside
this (for example, those inside the methods) are indented by the same amount

again to reflect this. To make sure that everything really is clear the braces
surrounding each method are aligned; the opening and closing brace in the
setValue method are aligned, for example.

Now for an example of poor layout. Believe it or not this definition is just
about identical to the previous example; the only difference is in the name of
the class. The compiler would treat it exactly the same and it would behave
identically if it were used in a program.

public class MangledDuck{private String name;private int age;
private double value;public MangledDuck(){}public void display()
{System.out.println("The details of the duck are:");
System.out.println(name);System.out.println(age);
System.out.println(value);}public void setAge(int newAge)
{age=newAge;}public void setValue(double newValue)
{value=newValue;}}

It is obvious that this definition is much harder to understand. There are no con-
venient blank lines to break it up into small chunks and there is no indentation
to help with an understanding of the structure. There aren’t even any comments
to provide some clues.

Another point about layout is that all lines in a program should be kept
reasonably short. The purpose of this is to make sure that the program will fit
neatly onto a printed page. It is customary to make sure that no line in a pro-
gram extends longer than 80 characters; the number 80 dates from the time
when this was the maximum number of characters that could be displayed on
one line of a terminal screen or printed across a page by a line printer. These
days this practice remains a good one; most experienced programmers will
always make sure that their lines are kept short, and many would stop at
around 75 characters to be on the safe side. All the programs in this book
(including both these in this section) have been formatted to make sure that all
lines fit neatly on the page (sometimes this means that the lines are rather short-
er than 75–80 characters).

When you write your programs always remember that you are not just
writing them for yourself. You are also writing them for other programmers,
and these are programmers who may one day have to change your program
when you are not around to advise. The indentation and layout that you are
going to use are of enormous help to others reading your program. Often when
students ask me to find an error in their programs they seem to be amazed
when the first thing I do is send them away to go through and correct their
indentation; often this alone finds the error but even if not it always helps.

Always write your programs with good layout and indentation. Never be
tempted to write your programs with no indentation intending to indent it all
properly once the program works. This is simply something that will make
more work for you and will make the job of anyone that helps you a great
deal more difficult. In many ways it is as important that a program is neatly and
consistently laid out as it is that the program works correctly.

You may well find that the Java system that you will be using will lay out
your code neatly for you as you program; consult your Local Guide to see if you
have this facility. If it will do, you should check the style that it will follow and
you should decide if you are happy with the style. If you are not, spend some
time finding out how to customise the style to your own preferences.

Programming (don’t panic!) 81

82 How to program using Java

The fifth and final golden rule is:

Always pay attention to layout and indentation as you develop your program, and
never treat either as an afterthought.

Don’t panic!
You will realise by now that programming is a complicated business. As well as
producing a program that correctly carries out some useful task, a programmer
must always produce a program that is neatly and consistently laid out.
A program is only ever of any use if it can later be changed and adapted by
other programmers.

Effective programming is all about applying a set of rules to a problem. When
you become confident and proficient you will probably find that programming
is an extremely rewarding task. A fully working program is a fine creation
and something to be proud of. Programming itself is an extremely creative and
enjoyable process. With neat layout and good style a program is very nearly
a thing of beauty.

As you learn to program, remember that it is a structured process. It is a
process that can only be carried out by someone who is calm and collected.
As you learn, above all “Don’t Panic!”.

Example 1 – Cilla’s poor style
As a new Java programmer Cilla is very concerned that her programs work. Bruce has
set her a lot of exercises and Cilla has to work hard to complete them before the deadline.
She decides to ignore the indentation of her program and intends to correct it all when
the program works. Unfortunately it takes a long time to make the program work and
Cilla doesn’t have time to correct the indentation. She is somewhat dismayed when
Bruce refuses to mark her program.

Why does Bruce behave like this? Is this reasonable?

This is very reasonable. Indentation is a crucial part of programming style and
it is important that new programmers quickly get into the habit of producing
correctly indented and well laid out programs. Cilla must remember that her
programs may well be used and corrected by other programmers in the future

Programming (don’t panic!) 83

and her poor layout will make it very difficult for these programmers to dis-
cover how her program works. Bruce is quite correct to refuse to mark the pro-
gram; the poor style will make it very difficult for him to see how it works or to
spot any errors.

Cilla should realise that it is just as easy to create the program with proper
indentation as it is to not bother. It is probably even easier, as the indentation
can often help highlight errors before the program is even compiled. Leaving
the indentation to the last minute is a very poor strategy.

Do not make the same mistake. Make sure that your programs are correctly
and consistently indented as you write them. As you learn more Java, adapt
your style and develop one that you can confidently apply consistently.
Whatever you do, do not ignore style and do not treat it as an incidental extra
that can be added once the program works.

Example 2 – Buddy’s poor style
Buddy is enjoying learning Java but he finds typing difficult. So that he can
learn more Java quickly he decides that he won’t bother with any comments in
his programs. He too is dismayed when Bruce refuses to mark his comment-less
programs. Is Bruce right?

Bruce is quite correct again. Like indentation, comments should never be treat-
ed as an afterthought. They should be included in programs as the
program is written to highlight the various stages that the program is passing
through. Comments are crucial when another programmer comes to correct or
maintain any program. It is always easier to add comments as the program is
written; if they are added at the end, after a long period of development, the
original programmer will often find that they themselves have forgotten how
the program works!

You can probably understand to some extent what the class definition in this
chapter does. You might not understand all of the statements, but you can still
read the comments. Well-written comments should tell you all you need to
know in order to use and even modify the program.

Again, do not make the same mistake as Buddy. Get into the habit of adding
comments to your programs as you write them. But beware of adding too many.

Example 3 – Elvis’s comments
Elvis is alarmed at Buddy’s comment predicament and decides to add comments
throughout his program. He adds comments to each line; many of the comments are
quite long and eventually there are more comments than functional lines of program.
Elvis is as dismayed as the others when Bruce says that his program is no better. What
is going on?

You will not be surprised to learn that Bruce is quite right. A programmer who
includes too many comments in a program is almost as bad as a programmer
who includes none at all. A program with too many comments quickly becomes
cluttered and very difficult to read. The key to good style is that the program is
neat and easy to read and understand. Too many comments, and comments on
lines whose function is obvious, can get in the way.

84 How to program using Java

Programming is a structured task that requires a structured approach. A pro-
grammer must build on a thorough understanding of a problem to produce
a program; a program must never be developed before the problem that it is
intended to solve has been fully analysed. A programmer must follow this
process strictly.

You may well find that as you become more and more confident in Java
you will include fewer and fewer comments in your programs. You may be
tempted at first to comment almost every line, and this is fine. As you learn
more you will come to realise that this is not really necessary as there are some
lines that every programmer will understand. Don’t be afraid to let your style
evolve and adapt.

7.1 Find another Java book and look at some of the example programs. See if
you can pinpoint the differences between the style in that book and in this.

7.2 Find out if you are required for some reason to use a particular style as
you learn to write Java. If you are, find out what the differences are between the
style that you will use and the style used in this book.

7.3 Investigate any facilities that your Java system might have for automatically
formatting your Java programs. Do you need to customise any of these features?

7.4 If you can, get hold of Java programs written by two or more different
experienced programmers. What common features can you see in these two
styles? Do you prefer one to the other? Even though you are still a novice
programmer, how much of the programs can you follow? Does the style help?
How about the comments?

Programming (don’t panic!) 85

Good and consistent programming style is as important as a sensible
structured approach. The guidelines for good style can be summarised in five
golden rules:

1. Work on one part of a program at a time. Get it right and then go to the next one.
Never work on many parts of a program at once!

2. If you have added twenty lines to your program, compile it and check that your
syntax is correct. Fix any errors before you carry on.

3. Whatever style you use, make sure that it is clear and neat. Remember that some-
one may have to change your program without your advice.

4. As you program, adopt and apply a consistent style. As you learn more, develop
this style to something that you feel confident and happy with.

5. Always pay attention to layout and indentation as you program, and never treat
either as an afterthought.

Remember these rules as you learn to program. If you break them you will be
making more and more trouble for yourself.

Now, finally, the time is right for you to take a serious look at some Java and
to write your first program.

86

The basics 87

This chapter is the first one that looks in detail at some Java. You should now
understand what a program is and you should have some idea of how to
analyse a problem area and design a solution that will solve a particular prob-
lem. You should also know how to create, compile, and execute the programs
you write. Now it’s time to actually write some!

A Java program is basically nothing more than a set of statements that instruct
a computer to perform some task. At the simplest level a program takes some
values and processes them to produce some other values. In this chapter you
will meet a full Java program in detail for the first time and will see how it
stores and processes these values. The next chapter will go on to explain
how to display the values and how to ask a user to enter the values. Together
these two chapters cover the most basic tasks that can be carried out by a Java
program.

After reading this chapter you should understand the basic structure of a
Java program. You should understand how values can be stored in variables and
how they can be manipulated. You should then be able to write some simple
Java programs.

Let’s start by looking at a very simple Java program. You have seen some
simple Java definitions and programs in the previous chapters and looked
at what some of the statements might achieve, but the focus there was just on
the layout and style and an overall view. Now it’s time to start understanding
what the Java statements actually do. Still, this program won’t do anything
especially useful just yet; the thing to concentrate on this time is just its
general structure. Here it is:

/* First.java – a very simple Java program.
Demonstrates the basic structure of a Java program.

88 How to program using Java

Author : GPH
Date : 14th December 2002
Platform : Linux (Red Hat 7.3), JDK 1.4.1

*/

public class First
{

public static void main (String args[])

{

int aNumber;

aNumber = 0;

}

}

This is the source code of a program.
The first six lines in this program, enclosed between /* and */ are comments

(you saw some in the program in the previous chapter). The compiler ignores
these lines; their only use is for a human reading the program. In this case they
provide the name of the file containing the program, give a brief description of
the purpose of the program, and tell us who the author was and when and on
what system the program was written.

This is the header block of the program, a collection of comments that provides
basic but important information about the program. A header block should as
a minimum tell the reader who wrote the program, what the program does,
why it was written, where it was written, and when it was written. As a pro-
gram is developed, changed, and maintained the header block should record
the same information about all the changes. This will then provide all the
information a human would need in order to understand how and why the
program was originally written and how and why it has been changed since.

More generally, comments are used for many purposes; common uses are to
explain parts of programs (especially complicated parts) and to record modifi-
cations to parts of a program. Their purpose is only ever for a human reading
the program.

The next line:

public class First

marks the start of the definition of a class called First. Here First is
the name of the program (or the name of the single public class defined in the
program); the braces immediately after this line mark out the definition of the
attributes and methods that this class has.

In fact this class has only one method and no attributes. The method is called
main, and the start of its definition is the line:

public static void main (String args[])

This marks the start of the program. Once the program has been compiled, this
is the part of the program that the computer will execute first, the main
method. There’s a lot going on in this line, and more detailed explanations will
have to wait until you’ve learned a lot more Java, but briefly:

● public declares that this method is available to anything that might want to
call it;

● static declares that this method can be called without requiring an instance
of the class it is defined in (so, for example, you can call a static method

The basics 89

of a class Duck without needing to create a Duck object first). In the course of
this book, the only static method you will meet is main;

● void declares that the method doesn’t return a value;
● main is the name of the method;
● (String args[]) is the single parameter of the method (in this case it

happens to be a list of values that are typed on the command line when the
program is executed).

Occasionally, you may see:

return;

as the last line of a void method such as this. This usually occurs where a crusty
old C or C�� programmer writes a Java program, and is perfectly acceptable,
but is regarded as bad style by a good many programmers. The return state-
ment simply tells the JVM to terminate execution of this method here and
return control of the program to the code that called the method. The closing
brace of a void method does this automatically, so there is no real need to
include a return statement as well.

You can treat this program as a template for your own programs. All of
the lines explained so far (or lines very similar to them with the name of the
program changed) will appear in every program you write. In fact it’s a
good idea to keep them in a handy file that you can use over and over again,
so that all you need do is change the comments at the top to explain a new
program. It’s also a fine idea to complete the parts of the header block in this
file, such as your name, that will not change whatever the program you are
writing.

The rest of the program is the body, or the definition of the main method. The
statements that make up body of the program (in this case the program and the
body of the main method are effectively the same thing) are contained between
two braces, { and }, just like the definition of the class. The programmer has
indented the statements between the braces to emphasise that they are enclosed
within them. This layout is ignored by the compiler, but is very helpful for the
human reading the program. You have seen the importance of layout and style
in the previous chapter.

There are two lines left. The first:

int aNumber;

is a variable declaration. This line tells the compiler that the program uses an inte-
ger value and that its name, more correctly called its identifier, is aNumber. Such
values are called variables because the value they hold varies (or has the poten-
tial to vary) as the program is executed. Any program that does anything even
remotely useful will use a lot of variables.

The second line in the program body is:

aNumber = 0;

This is an assignment statement. It simply assigns the value on the right-hand
side of the � sign to the variable on the left-hand side. So here the variable
aNumber is assigned the value 0. The � sign is not being used here in the
sense that you are probably familiar with from mathematics or algebra; it is not
a comparison but an assignment. It’s probably helpful to get into the habit of

90 How to program using Java

reading � used in this way as “becomes equal to” or “is assigned” rather than
just “equals”.1

These statements illustrate the two fundamental new ideas in this chapter.
Variable declarations and assignment statements are two of the most funda-
mental ideas in programming. Programmers need to declare the variables
that their programs will use and they need to be able to assign them values. The
following sections cover these ideas in more detail.

Variables and types
A variable is a value used in a program. It is created in a declaration at the top of
the program where it may also, if required, be given an initial value. The value
then changes as the program progresses, as the statements in the program
manipulate the value. A variable’s final value is sometimes one of the outputs
of the program. A variable has an identifier and a type of value that it can store.
The variable’s declaration tells the compiler what these two things are. For
example:

int aNumber;

declares a variable with the identifier aNumber that can store integer values
(in Java, int). It is good practice to provide an initial value for a variable at the
same time as it is declared.2 This assignment is simply added to the declaration.
So, for example, to assign aNumber an initial value of 0 the declaration is
extended to:

int aNumber = 0;

Declaring the type of a variable allows the compiler to allocate an appropri-
ate amount of the computer’s memory to store the variable’s values, and allows
the compiler to check that sensible operations are being carried out on values in
the program. Java has many data types, but for the moment just a few of these
will be quite enough:

int an integer value or whole number – 0, 1, 2, �1 and so on.
double a (double-precision) floating-point (decimal) number – 1.415, 1.25.
char a single character – ‘a’, ‘Z’, ‘$’.
String a sequence of characters – “hello”, “Walrus”, “Gumboot”, “%$%!%%”.
boolean a Boolean value – either true or false.

There is an important distinction between the ways in which characters and
strings are represented. Characters are enclosed by single quotation marks but
strings are enclosed with double quotation marks. This means that:

'a'

is the single character a, with the type char, whereas:

"a"

is a string containing just one character with the type String. This distinction
is subtle, but will become important. Take special note of the capital S on

1 We will in fact see a different Java symbol that is read as “equals” later on.
2 This is sometimes not necessary but it is a good habit to get into. If in doubt you should

always assign the variable an initial value.

The basics 91

String; this is not a misprint! The reason for this important distinction will
become clear later on when we look at strings in more detail.

A variable can only ever hold values of its own declared type. It is an error
to assign, say, an integer value to a string variable. The reason for this should
be quite obvious; the compiler has allocated the variable the right amount of
memory to store an integer and it’s very unlikely that a string will fit in the
same space.

Identifiers
The identifier chosen for a variable is pretty much irrelevant to the computer.
The computer can’t understand the language used for the name and certainly
can’t learn anything about the variable’s purpose from it. However, the identi-
fier is certainly very important for the programmer and for anyone else reading
the program. It is essential that the name chosen should neatly describe the
purpose of the variable. At the same time, the name should not be so long and
descriptive that the program becomes unwieldy and hard to read. A program-
mer must strike a delicate balance between descriptiveness and brevity.

As an example, suppose a simple program was used to monitor the birds at
a pond and that as part of this the program stored the number of ducks that
could be seen. Here are some possible identifiers for that variable and some
comments on them:

geese This is not a good name. In fact it’s a very
bad name because it’s positively misleading!

x At least this name isn’t misleading, but it
still doesn’t tell the reader much about
what the variable stores. This is poor.

thenumberofducksonthepond This name tells the reader what the value is
but it’s very hard to read. It’s better than
the last two suggestions, but a program
using this would be an example of very bad
style. It would also require a lot of typing!

ducks This is better still but it still doesn’t really
tell the reader what the value is.

numDucks This is the name we would use and is the
best of these suggestions. It’s short enough
to keep the program short and neat and it
tells a reader what the value is. numOfDucks
would be a reasonable alternative.

Choosing identifiers requires care and thought. The ones that you choose
must provide some information for people reading your programs. Also, you
might come back to a program after many months and have to understand it
quickly. Bearing this in mind, identifiers must also not be so long or unwieldy
as to make the program unreadable. There is a balance to strike.

Most programmers have a convention that they use for their identifiers,
or sometimes they will be asked to use one by their employer as part of
some prescribed standards. Like programming style, the choice of identifiers is

92 How to program using Java

a personal thing and you will probably develop your own style for doing this
as you gain more experience.

Our style is to use a single word if possible or otherwise to combine two or
three words and to capitalise the first letters of any words after the first (hence
numDucks in the example). To save typing and to keep the program short and
readable we abbreviate where the abbreviation is obvious; so number can
become “num”, value becomes “val” and so on. That’s the convention we will
use in the programs in the rest of this book. You’re free to copy it, to follow your
own convention, or to follow some other system that you might be required
to use. Whatever you do, think about the identifiers you choose and use a
consistent system for choosing them.

Declaring variables
Now it’s time for a more detailed look at variable declarations. The basic form
of a declaration is:

�type� �identifier�;

The declaration specifies the type of the variable (the type of value that it can
store) and states its identifier (its name). The line finishes with a semi-colon. If
the variable is to be given an initial value the declaration can be extended:

�type� �identifier� � �initial value�;

Here are some examples with comments to explain them:

int grade; // an integer to hold a grade, no initial value
int grade = 0; // an integer to hold a grade with initial value 0
char answer; // an answer to something – one character
String name; // a string to hold a name
String name = "Gumboot"; // as above, with an initial value
boolean finished; // to hold "true" if finished
boolean finished = false; // as above, but with an initial value

If more than one variable of a particular type is to be declared in a program,
they can both be named on the same line:

int aNumber, anotherNumber;

This version is used especially when the two variables have closely connected
purposes. It is identical in meaning to two separate declarations:

int aNumber;
int anotherNumber;

The choice between the two is largely a matter of the programmer’s style and
preference.

Values and variables
Variables aren’t much use if a programmer can’t give them values. Variables
are assigned values in an assignment statement. The general form of such a
statement is:

�identifier� � �value�;

The left-hand side of the � sign is the name of the variable that we want to
assign a value to and the right-hand side is the value. The effect is that the value
of the variable whose identifier is on the left becomes equal to the value that is

The basics 93

on the right. For example:

// Declarations
int grade;
char answer;
String name;

// Assignments
grade = 70;
answer = 'a';
name = "alan turing";

These three statements assign the three values on the right to the variables
named on the left. In each case the variable has to have the same type as the
value assigned to it; it doesn’t make sense to assign a string value to an integer
variable. As examples of what cannot be done, assuming the types in the
declarations above, these assignments are not allowed:

grade = "a*"; // cannot assign string to int
name = 100; // cannot assign int to string
answer = "hello"; // cannot assign string to char

Unlike the algebraic use of � it is not possible to write assignment statements
with the variable’s identifier on the right. This is not allowed and will cause a
compilation error:

'a' = grade; // Not allowed!

To make sure that you remember this, remember to get into the habit of
reading the � sign in an assignment statement as “is assigned” or “becomes
equal to”.

In all the correct assignment statements so far the right-hand side of the
assignment has been a simple value, called a literal value. It is probably more
common for it to be an expression. An expression is something that calculates
a new value. For example:

grade = 70 + 2; // grade is 72
name = "ada " + "lovelace"; // name is "ada lovelace"

These expressions can also contain variables:

int birds;
int geese;
int coots;

geese = 50;
coots = 100;

birds = geese + coots; // birds is assigned 150

Finally, the variable that appears on the left-hand side can also appear on the
right-hand side:

int ducks;
ducks = 50;

ducks = ducks + 1; // ducks is now 51

You might remember that programming statement that Tony could never
understand all those years ago! The one we mentioned long ago in Chapter 3:

50 LET X = X + 1

94 How to program using Java

This is, of course, an assignment statement (actually in the BASIC language, but
it’s very similar to the Java equivalent). Its effect is to add one to the value of
the variable X (sadly, most versions of BASIC only allowed single character
variable identifiers).

The important thing to remember, especially when the same variable appears
on both sides of the assignment statement, is that the value of the expression on
the right is calculated first and the result is then assigned to the value of the
variable named on the left. This means that a statement such as:

aNumber = aNumber + 1;

has the effect of adding one to (called incrementing) the value of aNumber. The
right-hand side is calculated first, and the result is then assigned to aNumber.

Initialising a variable
Now we know what a variable is, and how to declare one, we need to know
how to go about assigning an initial value to it. This is called initialisation and
is very important in programming. When a variable is declared within a class
definition, it will be assigned a null value (that is, for example, null for a
String or char, 0 for an int, 0.0 for a double, false for a boolean). When
a variable is declared within a method, it has no initial value, and any attempt
to use that variable before its value is set will result in a compiler error along
the lines of “this variable may not have been initialised”.

To recap, the declaration of an integer variable looks something like this:

int number;

and to assign it a value, we use the following:

number = 0;

This operation is so common that the two statements can be combined. This
gives the extended form of a declaration that also includes an implicit assign-
ment statement:

int number = 0;

This single statement has the identical effect to the two lines above.
Never assume that your variables have a value just after they have been

declared. Get into the habit of initialising them. Wherever possible, declare and
initialise a variable in a single statement, which reduces the likelihood that
you will later attempt to use an uninitialised variable. Finally, never try to use
a variable before it has been initialised, unless you are assigning an initial value
to it, of course!

Operators and their precedence
Some of the examples of expressions above used the addition operation “+”.
Expressions in assignment statements can also contain all the other usual
arithmetic operations (plus, minus, times, divide) that you might expect. The
symbols might not be quite what you are used to in arithmetic. They are:

/ Division
* Multiplication
+ Addition of numbers or Concatenation of strings
- Subtraction

The basics 95

When more than one of these is used in a single expression the operators have
a precedence that determines the order in which they are executed. This is the
same as you might be used to in arithmetic or algebra. The order of precedence
for these four operators is: / and *, then � and �. In other words, division and
multiplication are carried out before addition or subtraction.

The idea of an order of precedence often catches new programmers out and
does indeed take a fair bit of getting used to. Look at the following statement:

int number = 2 + 8 / 2;

You might think that number is assigned the value 5. You might expect that
2 is added to 8 to give 10 which is divided by 2 to give the answer. Not so! The
value number is actually assigned is 6. Division happens first (it has a higher
precedence), so 8 is divided by 2 to give 4 and that result is added to the first 2
to give 6.

Since this can be confusing, brackets can be added to the expression to make
things clearer. Again, this is the same as in algebra – the part of the expression
in brackets is worked out first and then the precedence of the operators takes
over. In other words, brackets have a higher precedence than the arithmetic
operators. The statement above could be written:

int number = 2 + (8 / 2); // number is assigned 6

to emphasise that the 8 is to be divided by 2 first. If this is not what is wanted,
it could be written:

int number = (2 + 8) / 2; // number is assigned 5

which changes the expression to make the addition happen first. In this case
this also changes the result of the expression.

It is good practice to always include brackets in expressions even when
the precedence of the operators would achieve the desired result. It makes
the programmer’s intention clearer and removes the possibility that other
programmers will suspect a mistake!

Some shorthand
A common operation that happens in almost all programs is to add one to
or increment the value of a variable holding a numeric value. For an integer
variable the assignment statement for this is:

number = number + 1;

This is so common that Java provides a shorthand form for this. A variable
can be incremented using the �� operator.3 An integer variable can be incre-
mented using this operator:

number ++;

This has exactly the same effect as the longer form:

number = number + 1;

The only advantage of using this shorthand is in the amount of typing the
programmer has to do. The operation is so common that it does save a lot of
typing.

3 This operator explains why C�� is so-called. It is after all C with some extra things added.

96 How to program using Java

Not surprisingly there is similar shorthand for taking one from (called
decrementing) a variable’s value:

number --; // same as number = number - 1

Sometimes a variable must be incremented by more than one, and so
another shorthand is available than allows the programmer to add a value
other than one to a variable:

number += 2; // adds two to number

Equivalents exist to subtract a value, multiply by a value, or divide by a value:

number -= 3; // takes 3 off number
number *= 3; // multiplies number by 3
number /= 3; // divides number by 3

Remember that the only purpose of these shorthand forms is to save typing.
You can always write out the statement in full if you prefer, and many new
programmers prefer to do so.

Casting and division
3 divided by 2 is sometimes 1. Really.

Java provides several data types for storing numeric values. The two described
so far are int (integers, whole numbers) and double (double-precision floating-
point numbers). These two types of value are clearly both numbers and thus are
the same sort of thing; it’s often useful to be able to assign values of one type to
the other. For example, you may think of using the following:

int number;
double cost;

cost = 12.0; // .0 indicates a floating-point value
number = cost;

to assign the value of cost to the value of number.4 This piece of program
generates a compiler error, though. The error will probably differ depending on
which platform you try to compile the code on, but will be along the lines
of “possible loss of precision”. This is because the fourth line above would
cause the decimal part of the double-precision number to be lost during the
assignment to an integer value. Thankfully, help is at hand.

There is a way around the loss of precision problem, known as casting from
one type to another. In other words, it is possible to force the compiler to
convert a variable of one type into a different type. As an example, we can cast
from double to int to achieve the effect we wanted above:

number = (int) cost;

So the type we want to convert to is placed in brackets before the variable we
wish to store its value. In this example, number now has the value 12, and in
effect there is no loss of a decimal part.

4 Note that the .0 on the value of cost isn’t really necessary. It’s included it here to clearly
show that this is a floating-point value. Pedantically, it’s a double-precision floating-point
value.

The basics 97

But suppose that cost had the value 12.75. The integer variable number
can’t store the decimal part, and in this case it would be lost. This issue crops
up most often in division. The thing to remember is:

an int divided by an int is an int and nothing but an int

This means that any decimal part of the result is lost. For example:

int number;

number = 5 / 2; // number is 2
number = 1 / 2; // number is 0

It might seem that this should not be allowed to happen and that any case
where it does it an error. The fact is that sometimes this result can actually be
what it required; it is actually a potentially useful result, the number of times
the right-hand side of the division “goes into” the left-hand side. You might
remember “remainders” in division; all that’s happening here is that the
remainder is being lost. Since this is likely to be correct some compilers will not
provide a warning of a possible error.

Statements could be written to calculate the result of a division including the
remainder:

int number;
int remainder;

number = 5 / 2; // 2 goes into 5 twice
remainder = 5 - (number * 2); // remainder is 1

An easier way to get the remainder of a division calculation would be to use
the modulus operator (%). This works as follows:

a % b gives the remainder for a / b.

So in the above example :

remainder = 5 % 2;

Be careful when combining integer and floating-point values in your programs.
If your programs are processing a lot of integer and floating-point values
and are giving you incorrect results, always check for problems with integer
division.

If you are dividing two integer values and you want the result to be a
floating-point value you can force the result to be a float by using a cast to
convert one of the integer values to a floating-point value, like this:

int aNumber = 12;
int anotherNumber = 5;
double result;

result = (double) aNumber / anotherNumber;

This would assign float the expected floating-point result, in this case 2.4. If you
find yourself having to do a lot of this it’s probably time to consider whether
the integer values shouldn’t really be floating-point values.

An alternative, less elegant way to convert an integer value to a floating-
point value is to multiply the integer by 1.0:
result = (aNumber * 1.0) / anotherNumber;

This technique can be useful at times, but a cast is probably usually to be
preferred.

98 How to program using Java

Constants
Variables by their very definition vary. Sometimes a program needs something
that behaves in the same way as a variable but that doesn’t vary; this is unsur-
prisingly called a constant. Constants are declared in exactly the same way as
variables except that the word final is added to the start of the line, and that
the assignment of the value may only be performed once at most. So, to declare
a final variable of type int:

final int MAXTURNS = 10;

It is important to note here that we can declare final objects, but that these
may still be changed. This sounds paradoxical, but is quite simple to illustrate.
If a class provides methods to alter its attributes (the so-called set methods, or
mutators), then, even though an object is declared final, it can still be altered
by calling one of these methods. However, declaring an object to be final does
mean that it can only be initialised once, so an object variable can only refer to
a single object for the duration of the program.

The same guidelines apply for choosing identifiers for constants. Many pro-
grammers also choose to give them an identifier that clearly shows that they are
not allowed to change. The convention that is often used (and that is used in the
programs in this book) is simply to write the name in CAPITALS. Capitalising
the initial letter is also a possibility, but this can lead to clashes with existing
built-in Java classes if done without careful thought.

Constants have two main uses. Sometimes they are used just for readability.
Suppose a program made a lot of use of the mathematical constant PI. A pro-
grammer could write:

final double PI = 3.1415;

at the start of the program and then later use the constant in expressions
such as:

area = PI * radius * radius;
circumference = 2 * PI * radius;

This makes the program much more readable. It also saves typing if the con-
stant value is used in many places in the program and ensures that the value
used is always precisely the same. It should be obvious that the statements
above are far preferable to:

area = 3.1415 * radius * radius;
circumference = 2 * 3.1415 * radius;

and that this a fine way to avoid errors or inaccuracies that might be caused by:

area = 3.14 * radius * radius;
circumference = 2 * 3.1415 * radius;

Another use of constants is when a particular value is used in many places in
a program and might need to be changed later. The value will never be changed
while the program is running but it might change later for some other reason.
Examples might be the number of games in a football season, the number of
some item packed into a box, or the number of attempts allowed in a game. It’s
far easier to declare that value as a constant; if it changes you only have to
change it in one place.

The basics 99

Output
Up to now, we’ve learned how to write exciting programs, which might even
do some useful things. However, I’m sure you’ll agree that these things are nei-
ther exciting nor useful unless we can see what’s going on. As it stands, you
know how to create a variable, assign it a value, and manipulate this value.
However, so far you’ve had to assume that the manipulated value is, in fact,
whatever I say it is. Therefore, this would seem to be a good time to show you
how to output messages to the screen.

In most books about programming or about a programming language
the first program the reader sees is always the same. This first program always
does nothing more than display the message hello, world or something very
similar on the user’s screen.

This is such a fine and longstanding tradition that it would be a shame to not
to include this memorable program somewhere in this book, even if it isn’t the
first complete program. So here is my version of that very program in Java:

/* Hello.java – the traditional first program
demonstrating output.

Author : GPH
Date : 14th December 2002
Platform : Linux (Red Hat 7.3) with JDK 1.4.1

*/

public class Hello
{
public static void main (String args[])
{
System.out.println ("hello, world!")

}
}

Again, this program defines a single method, and no attributes. You will
recognise all the lines in it except one – line 13 – and you might even remember
that from Chapter 6. This line actually uses a method already defined for
you, in order to output a string to the screen. This method is called println
and is defined as part of an object called System.out which we won’t
worry about too much, except to say that it almost always corresponds to
the terminal from which the program was run. This method takes a single
String parameter, which will be output to the screen, followed by a newline
character.

Now, you may be wondering how on earth we can have single characters,
integers or floating-point numbers output, if the method we’re using will only
accept a String as a parameter. Thankfully, the people who developed Java are
clever, and thought of this. They designed Java so that char, int and double
values can be added to the end of String variables automatically. This is also
known as appending a value to a string.

So, for example:

int numWheels = 4;

System.out.println ("There's " + numWheels + " wheels "
+ "on my waggon.");

100 How to program using Java

will produce the following output on the screen:
There's 4 wheels on my waggon.

If you need to do any sums in the middle of an output statement, you should
put the sums inside parentheses just to make it clearer what you’re trying to do.
In fact, this is usually only a problem if the sum is an addition. Consider the
following variable assignments:
int numDucks = 4;
int numCoots = 2;

And the following two, subtly different, output statements:

System.out.println ("There are " + numDucks + numCoots
+ " birds here.");

System.out.println ("There are " + (numDucks + numCoots)
+ " birds here.");

Here we have a potential problem. In the first output statement, the values of
numDucks and numCoots are appended to the output string one after the other,
while in the second statement, the values are added together, and the result of
this addition is appended to the output string. So the first statement outputs
a nonsense figure (42), while the second statement gives the correct figure (6).

Finally, you may sometimes wish to output information to the screen, but
without the newline character at the end. Thankfully those clever Java people
thought of that too, and provided another method with System.out, called
print. So, as a last example for this chapter:
System.out.print ("This is a line.");
System.out.println ("This is another line.");

will produce the output :
This is a line.This is another line.

Object objection!
The programs in this chapter are all very well and good. You will find that you
can type them in using your Java system, and you will be able to run them. But
there is something missing. Java is an object-oriented programming language;
where have the objects gone?

It is true that the programs that you have seen in this chapter (so far!)
have had no objects in them. In these examples Java has effectively been used
without objects, as a procedural language. This is fine and allowed, and is
sometimes what is needed. The real power of using Java comes when objects
are used, however.

Let’s look at the traditional first program once again, but this time with some
added objects. An application is needed here – we need something in the “real
world” to model as an object – so we’ll decide that Bruce has recently installed
a new illuminated sign outside his hut. He plans to use it to display interesting
messages to all the other birds. Obviously his first step is to find out whether
his new sign works properly, and displaying “hello, world!” on it would seem
to be a good start.

The first step here is to model Bruce’s sign as an object. More accurately, we
need a model of a class that can represent all illuminated signs, and Bruce’s sign
will be an instance of the class. We need to identify the type’s attributes and
methods.

The basics 101

There is one obvious attribute, the message that is displayed on the sign. This
is a sequence of characters, or a String in Java. There are no other attributes
that we need to worry about at the moment.

There are two obvious methods. First, Bruce will need some sort of way to set
the message that is to be displayed. This would presumably involve typing
it in. There will also need to be some way to activate the sign; there must be
some way for Bruce to confirm that the message is correct and that the sign
should start displaying. These two methods might be called setMessage and
display respectively.

There will be one other method, since the class will need a constructor. This
will provide some sort of initial value for the message; you could think of it as
Bruce turning the sign on.

The class might be called Sign and the definition would be created in a
file called Sign.java. The first stage would be to add the single attribute:

public class Sign
{

// Single Attribute – What to Display
private String message;

Now the methods are added. The first, the constructor, has the same name as
the class and just sets an initial value for the attribute – an empty string will do.

public Sign ()
{
message = "";

}

The other two methods are slightly more complicated, so let’s take them one
at a time. The first sets the message that is to be displayed. It will need a single
parameter representing the message (a String). There is no need for it to
return a value, so it can be a void method. All it does is take the value from the
parameter and copy it into the attribute, so:

public void setMessage (String newMessage)
{
message = newMessage;

}

The other method displays the message. It needs no parameter and does
not need to return a value. For the moment we’ll assume that displaying the
message in the usual default place will be enough, so:

public void display ()
{
System.out.println (message);

}

And that’s enough to define the class. Some comments should be added, of
course, to give the final definition.

/* Sign.java

Bruce writes the traditional first program, but this
time with objects.

102 How to program using Java

Author : AMJ

Date : 13th December 2002

*/

public class Sign

{

// Single Attribute – What to Display

private String message;

// Methods

public Sign ()
{
message = "";

}

public void setMessage (String newMessage)
{
message = newMessage;

}

public void display ()
{
System.out.println (message);

}
}

This is just a definition. You could type it in and Java would happily produce
a .class file, but it wouldn’t actually do anything. A main method is needed.
We’ll add a main method into the class; this is quite a common way of provid-
ing a basic program to check that all the parts of the class work as expected.
Such programs are sometimes referred to as driver programs.

The main method will have to do three things:

1. Create Bruce’s sign (as an instance of the Sign class).
2. Set the sign’s message to “hello, world”.
3. Display the message.

These steps conveniently correspond to the three methods. The first is the con-
structor, then setMessage, and finally display. There’s more about using
(properly called “calling”) methods later on in the book, but here’s a quick call
to the constructor for this class:

Sign brucesSign = new Sign ();

We know that this constructor sets the sign’s message to an empty string. The
next step is to use setMessage to set it to something more useful. The syntax
for calling a method on an object is:

�object name�.�method name� (�parameters�);

This method has one parameter, so this will do the job:

brucesSign.setMessage ("hello, world");

The call to the method to display the message is similar:

brucesSign.display ();

The basics 103

And that’s all there is to it. All that remains is to include the headers for the
main method to give a complete program.

/* Sign.java

Bruce writes the traditional first program, but this
time with objects.

Author : AMJ
Date : 13th December 2002

*/ Tested on : Linux (Red Hat 7.3) with JDK 1.40

public class Sign
{

// Single Attribute – What to Display

private String message;

// Methods

public Sign ()

{
message = "";

}

public void setMessage (String newMessage)

{

message = newMessage;

}

public void display ()

{
System.out.println (message);

}

public static void main (String[] args)

{
// Create an object for the sign
Sign brucesSign = new Sign ();

// Set the Message...
brucesSign.setMessage ("hello, world!");

// ...and display it.
brucesSign.display ();

}
}

Some programmers would complain that this program is overly complicated
and that there is no need to use objects in this simple case. Others would say
that all Java programs should use objects, and so all Java programs should be
written like this. They might well fight over it.

One advantage of this approach is that the class can be used in other appli-
cations. As we look at more Java we’ll expand Bruce’s class until he has
absolutely the best sign on the pond.

104 How to program using Java

The basics
Even though there are not that many new ideas here, there is a lot to understand
in this chapter. This is also the most important chapter in this book. Every-
thing that follows has to assume that you understand how to use and declare
variables and constants. Now, try the examples and exercises …

Example 1 – Mr Martinmere’s reserve poser
Mr Martinmere wants a computer program to help him keep details of the birds
living on the reserve. He wants to know how many birds there are in total and what per-
centages are ducks and coots; on the reserve at the moment there are many ducks and
many coots. What variables might his program use?

Taking things one at a time, the program will need variables for the total
number of ducks and the total number of coots and, perhaps, the total number
of birds. These values are all integers, but we will have to remember that the
percentages will most likely be floating-point numbers.

Some of the variable declarations might look like this:

int numDucks;
int numCoots;
int numBirds;

In the program itself there would be a line that calculated the total number of
birds at the reserve:

numBirds = numDucks + numCoots;

There would also need to be statements to calculate the percentages of ducks
and coots, given the total number of birds at the reserve. It would be prudent
to include some variables to store these percentages!

double duckPercentage;

duckPercentage = (double) numDucks / numBirds * 100;

It would also be reasonable to have a variable cootPercentage, along the
same lines as duckPercentage, but since we are only counting ducks and
coots, it makes sense in this case to calculate the percentage of coots as:

100.0 - duckPercentage;

The basics 105

Finally, Mr Martinmere would want to see the results of the calculations,
so it would be wise to include some output statements. Here is the complete
program:

/* BirdCalculator.java – Calculates numbers and percentages of

ducks and coots on the reserve.
Author : GPH
Date : 30th December 2002
Tested on : Linux (Red Hat 7.3) with JDK 1.4.1

*/

public class BirdCalculator
{

int numDucks;

int numCoots;

public BirdCalculator () {}

public void setNumDucks (int d)
{
numDucks = d;

}

public void setNumCoots (int c)
{
numCoots = c;

}

public void printInfo ()
{
int numBirds = numDucks + numCoots;
double duckPercentage = (double) numDucks / numBirds;
System.out.println ("There are " + numDucks + " ducks and "

+ numCoots + " coots on the reserve.");
System.out.println ("That equates to " + duckPercentage +

"% ducks and " + (100.0 - duckPercentage)
+ "% coots.");

}

public static void main (String args[])
{
BirdCalculator bc = new BirdCalculator ();

bc.setNumDucks (24);
bc.setNumCoots (15);

bc.printInfo ();
}

}

Example 2 – Elvis’s pocket money
Elvis wants to use a computer program to keep track of his pocket money. He wants
to know how much he’s got left at any time and so he decides that he needs to record

106 How to program using Java

how much he receives and how much he spends. What variables is the program going
to need?

Money is a floating-point value,5 so all the values in Elvis’s program would be
declared as double. There would be a variable for the amount of money that he’s
currently got and another to store anything he spends. These would be used in
a suitable expression to update the amount he’s got after he spends some.

The amount that he receives is unlikely to change very often, but it will prob-
ably change sometimes, so a constant would be used for that. The declarations
might look like this:

final double weeklyPocketMoney = 15.00;

double pocketMoney;
double amountSpent;

In the program there might be assignment statements like this:

pocketMoney += weeklyPocketMoney;

This is of course equivalent to:

pocketMoney = pocketMoney + weeklyPocketMoney;

Another assignment would alter the amount Elvis has after he has spent some:

pocketMoney = pocketMoney - amountSpent;

Remember that this last statement could also have been written:

pocketMoney -= amountSpent;

See how this shorthand saves typing! Here’s a full example:

/* MoneyTracker.java – A simple pocket-money tracker

Author : GPH
Date : 30th December 2002
Tested on : Linux (Red Hat 7.3) with JDK 1.4.0

*/

public class MoneyTracker
{
private final double WeeklyAllowance = 15.00;
private double pocketMoney;

public MoneyTracker (double amount)
{
pocketMoney = amount;

}

public double getAmount ()
{
return pocketMoney;

}

5 An issue here is that a double in Java can store many places of decimals, but money
values only ever have two decimal places. This can lead to errors, but only when a great
many values and calculations are involved – we’ll assume that Elvis doesn’t get enough
pocket money to make this a serious problem.

The basics 107

public void spend (double amountSpent)
{
pocketMoney -= amountSpent;

}

public void addAllowance ()
{
pocketMoney += WeeklyAllowance;

}

public static void main(String args[])
{
MoneyTracker mt = new MoneyTracker (13.50);
double amountSpent = 5.30;

System.out.println ("Money left from previous week : £"
+ mt.getAmount ());

mt.addAllowance();
System.out.println ("After this week's allowance : £" +

mt.getAmount ());

mt.spend (amountSpent);
System.out.println ("After spending £" + amountSpent +

" this week, there is £" +
mt.getAmount () + " left.");

}
}

In this example the constructor of the class takes a parameter (representing the
amount of money that Elvis has), this is the first time that we’ve seen this, so
take a close look!

Example 3 – Cilla’s cricket poser
Cilla and her friends all like cricket. Because he likes to keep all the ducks happy
Mr Martinmere allows them to play cricket every Thursday afternoon. The number of
ducks prepared to play changes frequently, depending on the weather, sore wings, and
so on. Cilla has written a computer program to work out how many teams can be made
up from the eligible ducks. Her variable declarations look like this:

final int TEAMSIZE = 11;
int numDucks = 36;

Cilla works out how many teams there can be like this:

int numTeams = numDucks / TEAMSIZE;

When she runs the program it tells her that there are three full teams available this week.
She is surprised to find some ducks left team-less. What’s going on?

Cilla has mixed up her data types, or at least she has not thought carefully
enough about what the results of her division will be. Because all the variables
in her assignment are integers, integer division has taken place and the remain-
der from the division has been overlooked. She needs an expression to work out
how many spare players there are; this would look like this:

int spareDucks = numDucks % TEAMSIZE;

108 How to program using Java

This uses the modulus operator, which, as we learned earlier, gives the remain-
der when the first operand is divided by the second. This would tell Cilla
how many eligible ducks will be at a loose end on Thursday afternoon. This
expression is equivalent to the rather more cumbersome:

int spareDucks = numDucks - (TEAMSIZE * numTeams);

Having said all this, it makes sense to move these calculations into separate
methods (getNumTeams and getRemainder, say), so that if the calculations
need to change drastically, they can be done once in the method body rather
than (potentially) several times in the main method.

Here is the complete program:

/* CricketScheduler.java – Cilla's cricket scheduling software

Author : GPH
Date : 9th June 2003
Tested on : Linux (Red Hat 8.0), JDK 1.4.1

*/

public class CricketScheduler
{
public CricketScheduler () {}

public int getNumTeams (int num, int size)
{
return num / size;

}

public int getRemainder (int num, int size)
{
return num % size;

}

public void printInfo (int num, int size)
{
System.out.println ("There are " + num + " ducks available.");
System.out.println ("This means " + getNumTeams(num, size)

+ " teams of " + size + ".");
System.out.println ("This leaves " + getRemainder(num, size)

+ " substitutes.");
}

public static void main (String[] args)
{
CricketScheduler cs = new CricketScheduler ();
int numDucks = 36;
final int TEAMSIZE = 11;

cs.printInfo (numDucks, TEAMSIZE);
}

}

8.1 Assuming that number is declared as an integer variable, what value is
assigned to number by each of the following statements?

number = 10;
number = 10 + 6;
number = 10 + 6 * 4;
number = 10 + 6 * 4 / 2;
number = 10 + 6 * 4 / 2 - 2;

8.2 Assuming again that number is declared as an integer variable and that it
has some value greater than 0 all of the following statements achieve the same
thing. What?

number = number + number / number;
number += number / number;
number = number + 7 / 7;

8.3 Write two more statements that would achieve the same results as the
statements in Exercise 8.2.

8.4 Identify and explain the problem with the following code fragment:

int coots;
char answer;

coots = 10;
answer = coots;

8.5 Identify and explain the error (or, indeed, the errors) in this fragment.

string name;
name = 'Buddy';

8.6 A program stores the name of the favourite chocolate bar of a group of
ducks in a string variable. Which of the following is a good identifier for this
variable?

thefavouritechocololatebaroftheducks
theDucksFavouriteBar
walrus
favBar
THEDUCKSTOPBAR

8.7 Assuming that number is declared as an integer variable, what effect do
these statements have on the value of the variable?

number --;
// number = 10;
number *= 2;

The basics 109

110 How to program using Java

8.8 Suggest the most likely data types to be used for a variable to store:

Your name
Your age
Your birthday
Your height
Your initials

8.9 Identify, explain, and correct the errors in the following Java program.

Public class Days

{

Public static void main(Sting args{})
{
constant int daysInYear = 365;
double numYears == 64;
int totalDay = daysInYear*double;
System.out{"There are " + total +
" days in " daysInYear + " years.")

}
}

8.10 Eggs are always sold packed in half dozens (packs of six). Write a Java
program that declares a variable to store the number of eggs available for pack-
ing and then calculates the number of boxes that are needed. You can assume
that each box must contain exactly six eggs. Your program should also calculate
how many eggs are left over. What would you have to change in your program
if new regulations meant that eggs had to be sold in boxes of ten?

8.11 All of the examples in this chapter were written with objects. They could
have been written without and, we admit, sometimes the use of objects is a
little cumbersome. Have another look, and ask an experienced Java program-
mer to show you what they would look like without objects.
There has been a lot to learn in this chapter so you might want to go back soon
and have another read! The ideas described here are fundamental to everything
else in this book so you should be sure that you’re confident with them before
reading on.

You should now know what a variable is and how one is declared. You
should understand that a variable has a type and an identifier. You should
know how to identify the appropriate types and choose good identifiers for the
variables in your programs.

The basics 111

Constants are a special kind of variable that don’t vary. You should be able to
identify situations where it is sensible to use a constant in a program.

You should be able to write simple expressions using the basic arithmetic
operators and you should understand the precedence of these operators.

You should also be able to produce simple output (probably on the screen)
using System.out.println.

This chapter also included the traditional first program (displaying “hello,
world”) written in two rather different ways. One used objects, and one did not.
Take a look at both programs and make sure you understand how they achieve
what they do. They both in fact do exactly the same thing, so think about which
is better. Think especially about which would be better if the program had to be
extended.

The one thing that you can’t do now is ask the users of your program to enter
values for your program to process. Once we know how to do that we can start
writing some really useful programs so let’s move on to the next chapter!

112

Input 113

Up to now, we have looked at some simple programs that take values which
have been set in the source code, manipulated these values and printed the
results of these manipulations. You have to agree that while what we have
learned so far is important, it is rather limited. In order to write any particularly
useful programs, the programmer would need to know all the values the pro-
gram needs in advance. This is hardly ever the case, and it is far better from the
user’s point of view if the program can receive values at the time it is run, rather
than the time it is compiled.

Never fear! This chapter will teach you the basics of how the user can provide
data to your programs to make them more flexible. This data can be provided
in two ways – either passively, at the time the program is first executed
(via what are known as command line arguments or CLAs for short) or interac-
tively while the program is already running. You will learn some important
differences between these two methods, and how to choose between them for
a given task.

By the end of this chapter, you should be able to differentiate between the two
sorts of input (command line argument and interactive), understand how both
forms of input can be used in your programs, and determine which form to use
for which purpose.

Virtually every program you will ever run from a command line, via a terminal
on a Unix system, or via a DOS or Command Prompt on a Windows system,
can be made to perform its task slightly differently depending on how it is
invoked. Nowadays the command line is often hidden from us behind a “point-
and-click” interface, so here’s a reminder of what it’s all about.

Users give instructions to computers as commands, words that have special
meanings. These commands are interpreted by the operating system, which
causes the computer to do something useful by executing a program. Usually,

114 How to program using Java

the user will decide how to influence the program’s execution by passing val-
ues to the program at the command line. Unsurprisingly, these values are
known as command line arguments (CLAs) and as an example, let’s look at the
DOS dir command:

C:\zep>dir
Volume in Drive C is DRIVE1
Volume Serial Number is ABCD-9876

Directory of C:\
12/06/2003 12:55 <DIR> .
12/06/2003 12:55 <DIR> ..
11/06/2003 10:43 6,150 wanton_song.txt
05/06/2003 22:42 5,341 white_summer.txt
21/05/2003 19:56 17,542 whole_lotta_love.txt
16/06/2003 09:21 9,974 wiawsnb.txt

The dir command is used to list files. When invoked with no arguments, the
output is a list of filenames found in the current directory. It is obvious why
this might be useful, but the dir command can be all the more powerful
by making use of the command line arguments it understands. One is the
/O argument (or flag) which tells the dir program to sort its output by some
rule other than the default (alphabetical order). /OD is used to sort by file time,
/OE sorts by extension, /OS by file size, /ON by name (which is the default).
So this provides a list of files ordered by their date:

C:\zep> dir /OD
Volume in Drive C is DRIVE1
Volume Serial Number is ABCD-9876

Directory of C:\
21/05/2003 19:56 17,542 whole_lotta_love.txt
05/06/2003 22:42 5,341 white_summer.txt
11/06/2003 10:43 6,150 wanton_song.txt
12/06/2003 12:55 <DIR> .
12/06/2003 12:55 <DIR> ..
16/06/2003 09:21 9,974 wiawsnb.txt

There are also flags available to list hidden files, list the contents of other
directories, and other useful actions. From this simple example, it should be
obvious why command line arguments are such useful tools to be able to incor-
porate into your programs. If you’ve used a Unix system you’ll certainly have
seen how widely used command line arguments are there.

Now, there are some programs which accept data interactively, after they
have started execution. Often this is because the values the program receives
cannot be known for some reason when the program is invoked. Since we
looked at an example to demonstrate command line arguments, let’s look at
another for interactivity. This is the humble Unix login program.

tetley login:

Anyone familiar with the Unix text console will instantly recognise this
prompt, as they have to enter their username and password when they see it in
order to gain access to the system. The login program is automatically
invoked after the system is rebooted or when another user has logged out. The
system cannot possibly know which user will log in next, so there is no point in
trying to pass the user’s name as a CLA. Therefore it makes sense for the login
program to receive the username when the user comes to log in.

Input 115

tetley login: gph
Password: <password>
Last login : Wed May 28 20:04:53 on tty4

tetley%

Assuming the username and password are entered correctly, the user now
has access to the system (hence the prompt is displayed). If, however, the cre-
dentials are incorrect in any way, the console would look something like this:

tetley login: gph
Password: <password>
Login incorrect

login:

So, it is easy to make an interactive program fault-tolerant without the need
to terminate it at the first sign of a problem. In the above case, the program
simply prompts for a username and password again after displaying an error
message. If such a program were, for any reason, non-interactive, it would be
much harder to incorporate the same level of fault-tolerance, and in fact it
would probably be easier (though more untidy) to display an error message
and terminate the program immediately.

There is no reason why a program cannot benefit from both command line
arguments and user interaction. For example, there are text processors which
take the name of the file to be processed as a command line argument, and if
the text contains a mistake, the user is prompted to enter the correct text.

Using command line arguments in Java programs
As with many things in programming, command line arguments are easy to
use, but rather tricky to use correctly. In the dir example above, each argument
needs to be identified, its function invoked, and the result combined with the
rest of the output to give the user what they expect. Java is no different in this
respect; it is down to the programmer to perform checks on the arguments and
have the program perform accordingly; there is no magic involved.

Believe it or not, you have been specifying command line arguments since
the very first program you wrote. They are hidden away in the declaration of
the main method:

public static void main (String args[])

You should be familiar with this line by now since every executable Java pro-
gram contains this line, in exactly this form. Up to now, the String args[]
part has been a mystery to you, but this actually specifies the list of command
line arguments provided to the program at the command line. The square
brackets tell the compiler to expect a list (known as an array, which we will look
at in more depth in Chapter 17), and this list contains objects of type String.

A simple example would be helpful at this point:

/* CLAtest.java – a nonsense example demonstrating CLAs.
Author : GPH
Date : 28th May 2003
Tested on: Linux (Red Hat 8.0), JDK 1.4.1

*/

116 How to program using Java

public class CLAtest
{
public void printTwoCLAs (String cla[])
{
System.out.println ("First argument is : " + cla[0]);
System.out.println ("Second argument is : " + cla[1]);

}

public static void main (String args[])
{
CLAtest ct = new CLAtest ();
ct.printTwoCLAs (args);

}
}

Here we simply take the first two elements of the command line argument list
and print them out with an appropriate message. For the purposes of this and
subsequent chapters, the notation for obtaining the separate elements of a list is:

name[element-1]

So above, the list is called cla, and the first element is accessed by using the
value 0 (1–1). Remember what we said in the first chapter about computers
counting from 0? Java programs always count this sort of list from 0.

This program is extremely limited, and it is easy to see why. It is left entirely
up to the user to ensure that the correct number of command line arguments is
supplied. You can try experimenting with the program yourself to see what
happens when they don’t; any fewer than two and the interpreter complains,
and the program stops running before it can do anything useful. Any more than
two and the arguments from three upwards are discarded without warning.1

The list of command line arguments can have any name the programmer
chooses. This program used cla as the name, but it is more usual to use
args (short for arguments) which is what we will do for the rest of the book.
You might also find C or C�� programmers who insist on using argv as
the name for the list since this is what C and C�� use for the same thing. It’s
another style thing.

Let’s try another, slightly more useful, example which uses exactly the same
principles as the nonsense example above. In the last chapter we encountered
Bruce’s Sign class, which allowed Bruce to set a message for the sign to display.
The version we have seen was extremely inflexible, in that the message has
to be hard-wired into the source code before compilation. This is not ideal,
especially if a novice user has to run such a program. So it makes sense to incor-
porate the command line argument input idea into this program.

The only change necessary is to read the message from the command line
arguments list rather than a predetermined value. Assuming the message is
passed as the first (and probably only) argument and that the list of arguments
is given the customary name args, the relevant code would be:

brucesSign.setMessage (args[0]);

1 These arguments are still there, in the array, of course. It’s just that we’re not doing any-
thing with them. Later on we’ll see how to check the number of arguments supplied, and
how to display error messages if this number is not as expected.

Input 117

So, incorporating this single change into the previous version of Bruce’s sign
makes it much more flexible since we can now change the message without
needing to edit the source code and recompile. The new version is:
/* CLASign.java

Bruce’s sign, which receives its message from the
CLA list.

Author : GPH
Date : 4th July 2003

*/

public class CLASign
{
// Single Attribute – What to Display
private String message;

// Methods

public CLASign ()
{
message = "";

}

public void setMessage (String newMessage)
{
message = newMessage;

}

public void display ()
{
System.out.println (message);

}

public static void main (String[] args)
{
// Create an object for the sign
CLASign brucesSign = new CLASign ();

// Set the Message...
brucesSign.setMessage (args[0]);

//...and display it.
brucesSign.display ();

}
}

Interactive input
So far we have looked at a way of obtaining data from the user passively
via command line arguments. While this certainly allows you to write more
useful programs than you have been able in previous chapters, it is still fairly
restrictive – the user must know the data values that need to be passed before
running the program. A program would be more flexible if the user were given
the option to pass data to the program while it executes – in other words, inter-
actively. Thankfully, help is at hand, as Java has mechanisms available to allow
such a thing.

First, a word of warning. The example programs we give here are not
strictly speaking “correct” Java since the code required to accept interactive

118 How to program using Java

user input is complicated, and far beyond your capabilities at the moment,
so we have chosen to hide it in classes of our own for the time being.2 So if you
were to move to a different computer and try to run these programs, you may
well find that they won’t run. Before carrying on, make sure that you have the
Console class correctly set up, as described in Chapter 3.1

The first example program in this section demonstrates how to make
a running program read an integer value.

/* ReadDemo.java – Demonstrating a simple form of interactive
data entry.

Author : GPH
Date : 8th June 2003
Tested on : Linux (Red Hat 8.0), JDK 1.4.1

*/

import htpuj.*;

public class ReadTest
{
public static void main (String[] args)
{

System.out.print ("Enter an int : ");
System.out.println ("You entered \"" + Console.readInt ()

+ "\"");
}

}

It should be clear from this example that the Console class is the “black box”
we have provided to allow you to read data interactively. This class is part of
our very own package, called htpuj, which must be imported at the start of
any program using it. The readInt method of this class, as you would expect,
attempts to read an integer value after the user has typed one (and throws a
suitable error if the value it encounters is not of the correct format, that is,
all digits). readChar, readDouble, and readString methods are also pro-
vided, and these work exactly as you would expect.

Continuing with the theme started earlier in the chapter, Bruce’s sign can be
extended so that the message can be provided interactively. Again, only minor
changes are needed. First, we need to import extra functionality (the Console
class) from an external source:

import htpuj.*;

Next, we need to add some sort of prompt for the user’s benefit:

System.out.print ("Enter message: ");

Finally, we need to call the setMessage method, passing the message we
receive from the user as the parameter:

brucesSign.setMessage (Console.readString ());

2 Don’t worry, we will reveal all before the book is out, when you’ve learnt enough Java
to understand how our classes work! If you really want to know, it’s all in the back of
the book.

Input 119

The final version is now a little longer:

/* InteractiveSign.java

Bruce’s sign, which receives its message from the
user interactively.
Author : GPH
Date : 4th July 2003

*/

import htpuj.*;

public class InteractiveSign
{
// Single Attribute – What to Display
private String message;

// Methods

public InteractiveSign ()
{

message = "";
}

public void setMessage (String newMessage)
{

message = newMessage;
}

public void display ()
{

System.out.println (message);
}

public static void main (String[] args)
{
// Create an object for the sign
InteractiveSign brucesSign = new InteractiveSign ();

// Prompt the user
System.out.print ("Enter message: ");

// Receive and set the message...
brucesSign.setMessage (Console.readString ());

//...and display it.
brucesSign.display ();

}
}

That’s about all there is to say about input at the moment. The examples are
easily adapted to suit your needs, and we will go on to add more flexibility
to your programs in later chapters, allowing you check the number of com-
mand line arguments, to prompt for input repeatedly, and to check the input
for errors.

120 How to program using Java

Example 1 – Buddy’s times table assistant
Buddy has never really had a head for numbers, and has a hard time remembering his
times tables. Unfortunately, the other ducks are far too busy waddling about the reserve,
quacking and playing cricket to help him most of the time, so he decides to write a
program to help him. What is the best way to perform this task?

As anyone over the age of seven knows, times tables involve only whole
numbers, so this task can be undertaken using only int values. Since this pro-
gram only needs to receive one value from the user, and the user should know
this value when they run the program, it makes sense to pass the value as a
command line argument. Notice the extra code to convert the String value to an
integer.

The example program below would give the first six terms in a times table, it
is hardly rocket science to extend it for more terms!

/* TimesTable1.java – Buddy’s program to help with times tables

Author : GPH
Date : 9th June 2003
Tested on : Linux (Red Hat 8.0), JDK 1.4.1

*/

public class TimesTable1
{

public void printLine (int x, int y)
{
System.out.println (x + " times " + y + " is " + (x*y));

}

public static void main (String[] args)
{
TimesTable1 tt = new TimesTable1 ();
int num = Integer.parseInt (args[0]);

tt.printLine (1, num);
tt.printLine (2, num);
tt.printLine (3, num);
tt.printLine (4, num);
tt.printLine (5, num);
tt.printLine (6, num);

}
}

Input 121

Example 2 – Cilla’s cricket poser revisited
Cilla decides to change her cricket scheduling program from the last chapter, to incor-
porate user input. The program works as before, but this time the user provides the data
interactively.

The user is asked to enter the number of ducks prepared to play cricket today,
and the calculations are carried out in exactly the same way as earlier. The only
changes needed therefore are:

import htpuj.*;

which tells the compiler and interpreter that some of the functions in this pro-
gram are found in other packages. The number of ducks available to play is
now found with a suitable prompt:

System.out.print ("How many ducks want to play?: ");
numDucks = Console.readInt();

A prompt is shown to the user, and the program takes the data the user
inputs and stores it in the numDucks variable (which was used in the earlier
example). The rest of the program is unchanged, apart from the class being
renamed to distinguish it from the earlier example.

/* CricketScheduler2.java – Cilla’s improved cricket
scheduling software

Author : GPH
Date : 9th June 2003
Tested on : Linux (Red Hat 8.0), JDK 1.4.1

*/
import htpuj.*;

public class CricketScheduler2
{
public CricketScheduler2 () {}

public int getNumTeams (int num, int size)
{
return num / size;

}

public int getRemainder (int num, int size)
{
return num % size;

}

public void printInfo (int num, int size)
{
System.out.println ("There are " + num + " ducks available.");
System.out.println ("This means " + getNumTeams(num, size)

+ " teams of " + size);
System.out.println ("This leaves " + getRemainder(num, size)

+ " substitutes.");
}

public static void main (String args[])
{
CricketScheduler2 c2 = new CricketScheduler2 ();
int numDucks;
final int TEAMSIZE = 11;

122 How to program using Java

System.out.print ("How many ducks wish to play?: ");

numDucks = Console.readInt ();

c2.printInfo (numDucks, TEAMSIZE);
}

}

9.1 Identify and explain the error(s) in the following fragment of code:

final int numCoots = 11;
System.out.print ("Enter the number of coots : ");
Console.readInt (numCoots);

9.2 Modify Mr Martinmere’s reserve poser (from the examples in the last
chapter) so that it accepts the numbers of ducks and coots on the reserve as
command line arguments rather than hard-coded values.

9.3 Change the program you wrote for Exercise 9.2 so that it prompts the user
for the numbers and accepts the values interactively, rather than at runtime.

9.4 Modify Elvis’s pocket money poser (also from the previous examples), so
that the user is prompted for their name (to personalise the program somewhat)
and the values used in the calculations.

This chapter does not contain a huge amount in the way of new Java, but the
concepts it introduces are fundamental to allowing any amount of user interaction
with your programs. Hardly any real-world programs run without some sort of
input, either from the command line at runtime, from the user during execu-
tion, or from some file or network connection. Therefore it is important to know
at least a couple of ways of obtaining data from the user.

Input 123

Command line arguments (CLAs) are used to pass values to a program as it
is invoked, while interactive prompts are used to obtain values while a program
is executing. Command line arguments are only useful if the user knows the
values before the program is run; if this is not the case, interactive input can
be used instead.

Processing command line arguments is far easier to code than processing
interactive input, but the extra effort is worth it in programs where, for exam-
ple, values need to be input repeatedly, where there is no set order for the
values, or where there is a choice of values to input (say, to change a duck’s
name, weight or value).

Some of the programs in this chapter are getting a little complicated. It is
important that we are sure that the results they produce are correct, so the time
has come to take a quick break from Java to look briefly at how programs can
and should be tested.

124

A word on testing 125

You have now written your first complete Java program. Most of the rest of this
book will be about Java, but in many ways writing a program is only half of the
story. If a program is going to be truly useful the programmer and, more impor-
tantly, the program’s intended final users must have confidence in the results
that it produces. They must be sure that the results they see from the program
are correct. Business users are potentially going to base costly business
decisions on the results produced by the programs they use, pilots are going to
trust navigational systems in their aircraft, and so on. This brings us to a brief
pause from looking at Java. This chapter looks briefly at how and why
computer programs are tested.

After reading this chapter you should understand something about the ways
in which all your programs should be tested. You should be able to write a test
plan for a program and you should also be able to carry out the plan. Using the
ideas from this chapter you should be able to demonstrate that all the Java
programs you write in the future are “correct” and you should understand why
it is never possible to be completely sure that a program is completely correct!

Writing a computer program is a complicated business but it is far from the
only activity involved in producing reliable software for reliable computer
systems. We have already seen the importance of thorough analysis and design
before a program is written. The process of producing reliable computer
systems is usually called Software Engineering. The term software engineering
includes a wide range of activities – designing software, testing software, writ-
ing documentation, and more – of which programming is only quite a small
part. Some programmers call themselves Software Engineers to reflect the range
of tasks involved; in many organisations a programmer would be expected to
carry out a range of such tasks. Programming and software engineering are not
the same thing.

126 How to program using Java

Computer programs are everywhere in the modern world. Modern cars
have systems that rely on extremely complex programs to control everything
from the car’s heating system to its brakes. Airliners have computerised
“fly-by-wire” systems that almost allow them to navigate and fly themselves.
Anyone who drives a car or flies on an airliner is placing a lot of trust in these
computer programs and by implication in the skills of the programmers who
wrote them; if the programs failed by producing the wrong results the conse-
quences could be catastrophic. Remember that all these programs were at some
point written by a human programmer and that humans often make mistakes.
That is why all these programs were also very thoroughly tested before anyone
was allowed to use them in any sort of potentially costly or dangerous
situation.

Testing programs is another important part of software engineering. For a
computer system to be truly useful its users must be confident that the system
functions correctly and that the results it produces are correct and reliable. The
process of testing a computer program to ensure its accuracy and reliability is
in many ways much more important than the process of writing the program
itself.

Testing a simple program
Cilla’s most impressive program for working out how many cricket teams the
ducks can form will serve as an example of how a simple program can be
tested. This program takes the number of ducks who want to play cricket on an
afternoon and displays how many teams there should be and how many ducks
are left over1 and will have to be substitutes. The process of testing this program
thoroughly is quite complex, even though the program itself is very small and
straightforward.

Here is the program again:

/* CricketScheduler.java – Cilla’s cricket scheduling software

Author : GPH
Date : 8th June 2003
Tested on : Linux (Red Hat 8.0), JDK 1.4.1

*/

public class CricketScheduler
{
public int getNumTeams(int num, int size)
{
return num / size;

}

public int getRemainder (int num, int size)
{
return num % size;

}

1 Admittedly the results of an error in this program are unlikely to be as catastrophic as, say,
an error in a fly-by-wire system but an enraged waterfowl that has lost out when there’s a
chance to play cricket is not a pleasant thing.

A word on testing 127

public void printInfo ()
{
System.out.println ("There are " + numDucks +

" ducks available.");
System.out.println ("This means " +

getNumTeams(numDucks, TEAMSIZE) +
" teams of " + TEAMSIZE + ", and " +
getRemainder(numDucks, TEAMSIZE) +
" substitutes.");

}

public static void main (String args[])
{
CricketScheduler cs = new CricketScheduler ();
int numDucks = 36;
final int TEAMSIZE = 11;

cs.printInfo();
}

}

This is the version of the program that has the numbers hard-coded; we are
just using this version to keep the code short here. Obviously in “real life” Cilla
would use a version where she was able to enter the number when the program
was executed.

The first step in testing this program is to develop a plan; not surprisingly
this is called a test plan. This plan will simply list some input values (called test
data) that will be provided to the program together with the results that would
be expected if the program were working as expected. These expected results
are calculated, in advance, by hand. They are obviously checked very thor-
oughly as mistakes can be disastrous.

Each set of input values and expected results forms one test case for the
program. If the program produces the correct results for each test case (and
assuming that there are sufficient test cases to cover all possibilities) then it will
be safe to assume that the program is correct and so works as intended.

Some sample test data for Cilla’s program is:

Input Expected Outputs

ducks teams ducks left over

10 0 10

65 5 10

100 9 1

So, for example, the third test case here states that if there were a hundred ducks
the correct results from the program would be nine teams with one duck left
over as to act as a substitute. The other two test cases simply test other possible
input values.

Testing the program is then just a case of running it for each set of data and
recording the actual results. These results are compared to the expected results
for the same test case and if they all match the program has passed all the tests
and is assumed to work.

128 How to program using Java

The problem is that this doesn’t mean that the program actually works! There
is only sufficient information here for a programmer to assume that it does. In
the example above there are only three sets of test data; if the program passes
all three test cases all that is actually known is that it works correctly with these
three pairs of input values. It is certainly not possible to be sure that it works
with every possible set of input data; with most types of input data2 there could
always be some extra test case that has not been tried for which the program
produces an incorrect result.

This is the problem with testing any program. A program will be expected to
work with very many input values; a program very similar to the program
above could potentially process an infinite number of possible values. For this
reason it is rarely possible to test any program with every possible set of test
data. Instead, representative values are used to build up test cases in a test plan;
if the program passes all the test cases it is reasonable to assume that it works
correctly in all other possible cases. This is the case with all programs; a pro-
gram in an airliner cannot be tested on every route the airliner might fly and in
all weather conditions. For any program a subset of the possible input values
must be used in the test plan. Picking those values requires thought; this
process cannot be allowed to be random.

Programs should also be able to cope with input values that are not as expected;
a user may enter a negative number when a positive number is expected,3 for
example. This means that programs should also be tested with unexpected values.
In this example an input that indicated that there was a negative number of ducks
is obviously nonsense, but it is important that the program deals with such inputs
sensibly. There are also some specific cases to look out for. There is a potential error
in this program if a negative were entered for the number of ducks. This would
give the situation were negative ducks were assigned to teams! Another common
error occurs when a value is being used as a divisor in a calculation; such a value
cannot be allowed to be 0, since division by 0 is an error. The program must always
cope with errors of this kind and must behave sensibly.

Taking this potential error case into account a more complete test plan can be
drawn up. In this case 0 is allowed to the number of ducks (there would be no
teams, and no ducks left over, presumably), but it is the lowest possible value that
is allowed. A more complete test plan for the example would look something like:

Input Expected Outputs Pass?

ducks teams ducks left over

10 0 10

65 5 10

100 9 1

0 0 0

�1 Error

2 In this small example it might be possible to test all the possible values, assuming that there
was a small number of ducks. But, in more sophisticated programs, there is generally no
sensible way to record and test all the possible input values.

3 Users are like that.

Once again there are assumptions in this plan. A new one is that if the
program correctly handles one input of a negative number for the input value

A word on testing 129

it will also correctly handle all others. This assumptions, and there are more
even in this simple case, are necessary since it is rarely feasible to test a program
with all its possible input values or combinations of input values. A final
change in this test plan is the addition of the final column; this is just there to
record the result of the tests.

Boundary and typical values
A systematic plan is needed for choosing the values to be used in test cases. One
possibility would be to just choose random values4 but this could lead to
carrying out too many or too few tests and could mean that the testing takes far
too long or overlooks some important test cases. Something much more sys-
tematic is required. A system is needed that will allow testers to choose a small
enough number of test cases so that they can actually carry out the test in a
reasonable amount of time but which still gives them enough test cases to allow
them to be confident that a program is correct.

There are basically two sorts of expected values that can be input to a
program. Typical values are simply examples of those that the program is
expected to process when it is running normally; testing with these is just a case
of choosing a collection of typical values and assuming that if the program
processes these all correctly it will also correctly process all other similar values.

Boundary values are more complicated. These are those that occur around a
limit on the acceptable values. In the example above there is a lower boundary
on the possible value for the number of ducks – it cannot be less than 0. The
program should be tested with all boundary values and also the two values
immediately surrounding each boundary. In the example there is an assump-
tion that there is no upper boundary on the number of ducks, although there
might well be in practice.

To help the tester, a test plan should also indicate the purpose of a particular
test case – whether the value is typical or boundary. A full test plan for Cilla’s
Cricket Scheduling program might be:

Input Expected Outputs Pass?

ducks teams ducks left over

1 Typical 10 0 10

2 Typical 65 5 10

3 Typical 100 9 1

4 Boundary 0 0 0

5 Boundary �1 Error Error

6 Boundary 1 0 1

4 Programs do exist that generate random numbers that can be used as test data to be used
as input to other programs. They are useful for carrying out large numbers of tests
automatically.

The other addition this time is numbers to index each test case. This is simply
for ease of reference so that, for example, someone testing the program could

130 How to program using Java

easily and unambiguously give the programmers a list of the tests that the
program fails.

In this plan, tests one to three are randomly chosen typical values while tests
four to six test the lower boundary on the number of ducks (we have assumed
that there might reasonably be no ducks at all and that there is no upper limit).
Notice how a lot of the testing is concentrated around the boundary values. In
practice we would tend to expect three tests at each boundary value, so this is
obviously where most testing will be concentrated. This is expected since it seems
reasonable to assume that this is precisely where errors may have been made.

Writing and using the test plan
The test plan can be written directly from the specification of the program and
so can and should be written before the program itself is written. It is normally
easy to identify boundary and typical values from the specification and the
expected outputs should be calculated by hand and carefully verified. The plan
should be allowed to be dynamic to some extent; it should be changed if the
program’s specification is changed. The plan should certainly be complete
before starting to write the program. While some testing will take place during
the program’s development as the programmer checks the code the final test
should always be carried out according to the plan. The final test of a program
should never be carried out randomly and the final test plan should never be
written after the program is complete.

In many commercial software development businesses there will be people
whose specific job it is to test programs. These will rarely be the same people who
write the programs. This is a good thing; it is sometimes very difficult to be objec-
tive when you test your own programs. After all, you wrote it and you know how
good it is. You know it works so what is the point in thoroughly testing it?

It’s likely, though, that while you learn to program you will be testing your
own programs. When you do this try to be as thorough and as ruthless as pos-
sible. It’s worth remembering that if you don’t find an error someone else will.
Make sure that your test plan is complete and that it covers all the possible
cases. It’s also a good idea to ask a friend to test your program while you return
the favour and test theirs. You can enjoy yourself finding tiny errors in your
friend’s program while they derive similar satisfaction from testing yours.

The final version of a program should pass all the tests in the plan.
Sometimes, of course, the plan will show up errors that must be corrected and
the program will have to be changed as a result. Obviously the program must
then be tested again. In this case it is vital that the whole test plan is run again
after any change; a change to correct one error may well have caused an error
somewhere else in the program and another test case may now produce incor-
rect results. The final version of a program should always pass every single test
case in the plan.

Testing and debugging
As you write your programs you will be running them from time to time to
check that they compile and work as expected. More often that not you will
look at the outputs, spot mistakes, and then make changes to the program. You
will find bugs and you will fix them. This is debugging, not testing.

A word on testing 131

Do not confuse these two activities. Debugging is an important part of the
programming process; a programmer finds errors in the program and fixes them.
But this happens before testing. Testing is a structured activity used to verify that
a program is correct. It takes place only when the program is believed to be
correct and when all the known bugs have been found and corrected. Of course,
testing may well uncover more bugs but it still remains a separate activity.

User testing
The first true test of any computer program comes not as it is being written but
when it is used “in anger” by one of the intended users. This kind of testing
takes place in a very different environment to that in which the testing strategy
described here is used. Users are very unpredictable things5 indeed!

Most commercial software will be thoroughly tested by the software com-
pany that wrote it. But before it is made widely available the company will
always send it to a few selected users for beta testing. This testing simulates the
environment in which the programs will eventually be used and can often show
up errors that could not be found with any test plan.

You can adopt this idea, again by cooperating with a friend. A fine way to test
one of your programs is to ask a friend6 to use it for a while. Don’t give them
the test plan and don’t ask them to test it systematically but just ask them to
play around with your program and see what they can find. The idea is to see
how your program works when a real user uses it. Challenge your friend to
find a mistake in your program; you might even offer them a prize if they find
one! You will be amazed at what they will do with your program as they
attempt to break it.

Testing is important
Testing a program thoroughly can be a tedious and repetitive job but it is also a
vitally important one. A program that produces incorrect results is a very
dangerous thing; many people have great faith in the figures generated by a
computer and errors in these figures can be costly and dangerous. Whenever
we get in a car or fly in an airliner we are placing a great deal of faith in the
programmers who wrote the programs and perhaps even more faith in the
testers who tested the programs.

Whole books have been written about testing and this chapter has been only
a very quick taster of the whole process. You should now be able to write a test
plan for each program you write and you should be able to carry it out. Above
all you should understand why thorough testing is so important!

You should also realise that it is never possible to be completely certain that
any program works as expected in all cases. There will always be some set of
input values, some test case, or some other set of circumstances that might
cause the program to fail. What is important is that the testing is as thorough as
possible so that the users can have as much confidence as possible in the

5 It has been said that the most used expletive in the software development industry is
“Users!”. It is probably true.

6 A good friend. Or at least a friend you trust. Friendships can be broken over errors in
programs!

132 How to program using Java

Example 1 – Ice skating ducks
Every year the pond freezes and Elvis and his friends seize the opportunity to hold an
annual Ice Skating competition. Each competitor receives a mark out of six from each
judge. There are five judges. The final mark for the competitor is calculated by discard-
ing the highest and lowest mark received and then taking the average of the three marks
that remain.

Write out a test plan for the program that calculates the final marks.

The highest mark from any judge is six and the lowest is 0, so these are the
boundary values. The plan will also have to verify that the correct average is
calculated and that the correct scores are being disregarded; this can be done
with a range of typical values.

The plan would be:

Purpose Judge Mark Pass

1 2 3 4 5

1 Typical 6 6 6 6 6 6.0

2 Typical 1 6 3 3 3 3.0

3 Typical 6 6 2 2 4 4.0

4 Typical 1 6 2 4 4 3.33

5 Boundary �1 6 6 6 6 Error

6 Boundary 0 6 6 6 6 6.0

7 Boundary 7 6 6 6 6 Error

The typical values in tests one and two are chosen randomly; in fact they’re
chosen to make calculating the expected result easier! Test three includes two
equal highest and lowest scores to check that only one of each is disregarded
and test four has a result that is not an integer. The final three tests check the

program. Obviously the program’s application will also determine how
thorough the testing must be; a program to sort ducks into cricket teams
probably requires less thorough testing than a program to fly an airliner.

In fact testing a program thoroughly is just as important as writing it in the
first place. In many cases it is much more important; an untested program is
useless and sometimes even a dangerous thing.

A word on testing 133

boundary conditions; this is only tested with judge 1 so there is an assumption
that the other judge’s marks are processed in the same way.

Example 2 – Elvis’s calculator
Elvis has a simple program that allows him to do some basic mathematics. It allows him
to add, subtract, multiply, and divide. He has tested this program thoroughly and believes
that it works. To help him with some more complicated mathematics he adds a square root
function for integer values to his program. What should he add to his test plan?

A range of typical values is easy to find; pretty much any positive values will do.
Since there is no square root of a negative number7 all negative values are error
cases, so Elvis will have to be sure that his program works correctly with those,
presumably by generating some sort of error message. The program should
correctly find the square root of 0 (which is 0), so this is a boundary.

The extra test cases in his plan would be:

7 Only an imaginary one, of course.

Purpose Input Output Pass

1 Typical 4 2.0

2 Typical 15 3.87

3 Boundary 0 0

4 Boundary �1 Error

5 Boundary 1 1

This time there are test cases on both sides of the boundary (tests three to
five). There are also assumptions that if the program correctly deals with �1 it
will do the same with �2 and that an accuracy of two decimal places is suffi-
cient. This accuracy is determined by the application; if the program were to be
used in a more complex application such as airliner navigation it would be nec-
essary to use and check many more decimal places.

Elvis would also have to run all the other test cases for his program before being
confident that his new program worked. It is entirely possible that adding this
new function to his calculator has introduced errors elsewhere in the program.

10.1 Type Cilla’s cricket scheduling program into your computer (or get
it from the web site), compile it, and execute it. Use the test plan to see if it is

134 How to program using Java

correct in all cases. Identify any cases where the program does not work cor-
rectly. You’ll find it easier to use the version that takes input from the user.
10.2 The case of dividing a number by 0 has been identified as a potential
error in a program. Write a small program to find out what your Java system
does when faced with a division by 0. At what stage does your Java system spot
this error? You don’t know how to stop this happening yet (that’s in Chapter 14)
but at least you’ll recognise it when it happens!

10.3 In the first example in this chapter the assumption was made that if the
first judge’s marks were handled correctly all the others were also handled
correctly. Is this a sensible assumption to have made?

10.4 A program takes the marks achieved by a student on three tests and
displays the average. Each test is marked on a scale of 0 to one hundred inclu-
sive. Write a test plan for this program.

10.5 The program from Exercise 10.4 is extended to display the class of the
student rather than the average. Three classes are defined; A (for average marks
70 to 100), B (average 40 to 69.9), and C (39.9 and less). Write a test plan for this
version of the program.

Testing is important. As well as having to learn to program you are now going
to have to learn to test your programs. It will be best if you get into the habit of
developing and using thorough test plans. Never be tempted to treat testing as
a random activity. It can be tedious, but it is very important.

A test plan provides a list of test cases that can be applied to a program. Each
test case consists of a set of input values and the corresponding set of output
values. A program has passed the test if and only if it passes all the test cases.
Only then should a programmer have any confidence in the program. Only
then should a programmer be prepared to pass the program on to its intended
users.

The test plan should be written before the program. Ideally it should not be
written by the programmer or by anyone who has any knowledge of the details
of how the program works. The test plan should certainly not be written as an
afterthought when the program is believed to work!

Writing a program is only part of the activity of programming. Testing the
program and correcting the errors revealed is another, equally important, part.

135

136 How to program using Java

Up to now, we have looked at some basic objects, given them a moderate
amount of functionality, and learned how to use these objects in simple pro-
grams. This book was never intended to be that basic, so in the next two chap-
ters we shall revisit much of the earlier material, going into greater depth about
classes, objects, methods, and attributes.

There is little new in the way of Java in these chapters; we are concentrating
more on writing classes that could conceivably be reused by other program-
mers in the future, and the methodology of writing such programs, rather than
any bells and whistles that would overcomplicate matters at this stage.

In this chapter, you will be building a class yourself. By the end of it, you
should understand how to create a .java file to define your class, and you
should understand a little more about methods and attributes and how to
incorporate some into your class.

A .java file defines a class. A .java file can, of course, also contain a program.
As we have seen, a Java program is essentially a Java class with a special
method called main. So in effect, any Java class can be made into a program,
for good or bad, by defining a main method within that class.

Before we look at a definition of a class, let’s quickly revise some definitions.

● An object is something of interest in a problem area. It is something that is going
to be used in or somehow affected by a program. An example might be a duck.

● An object type is a specification of the characteristics shared by a collection of
objects. An example might be “ducks”. In Java (and in most other object-
oriented languages) an object type is called a class.

● An attribute is a characteristic of an object type that is of interest. This is a
single value of a particular type. The ducks will have names (strings), ages
(integers), values (money), and more.

A first class 137

● A method describes a behaviour of an object that is of interest. A duck might
move to a particular point, might increase its value or might change its name.
Programs interact with objects through methods.

So the definition of a class is going to need to define the object type that the
class models. This involves specifying the attributes (and their types) and
the methods (and how these operate). We’ll start with attributes, but first the
syntax of the file.

A class definition
The definition of a class is obviously fundamental to the development of any
program that uses the class. It is vital that the definition is laid out neatly so that
a programmer using the class can see immediately how the class works and is in
no doubt about the details. The chapter on analysis showed how it was possible
to read a program specification, and deduce from it the object types (or classes)
that such a program would use. Analysing each class in turn, it is then possible
to settle on a list of attributes and methods that each object should define.

The first thing to do before trying to use a class is obviously to read through
the definition. The file should start with a suitable header block of comments
that will give you the general idea of what the class is for (and will provide you
with the name of the original author in case you have any complaints!). Then,
assuming that it follows the usual format, you should find definitions of the
attributes and methods.

You should take note of the exact name of the class, the types of any attrib-
utes, and all the details of the methods. Later on you’ll be able to read the
statements inside the methods to see what they do, but you shouldn’t have to
do this as everything should be clear from comments. If anything isn’t totally
clear it’s probably a good idea to seek suitable clarification before attempting to
use the class.

The basic format of a well-written definition looks like this:

// Header Comments

public class �class name�
{
// Attributes defined

// Methods defined
}

From the top, the first important element is a header block of comments that
provides someone reading the file with all the information they need about the
class. This information should include at least the name of the class, some
description of its purpose, the name of the author, the date the file was written,
and perhaps details of the particular Java platform that was used.

We have already seen this in all the complete Java definitions and programs
so far. An example might be:

/* Duck.java – A simple Duck class.

Author : AMJ
Date : 31st December 2002
Tested on: Red Hat 7.3, JDK 1.4.0

*/

138 How to program using Java

Here we have the name of the class and a brief description. The rest of the
information identifies the author (in case someone finds a mistake and wants to
complain!), the date the class was written, and finally the platform that was
used (Red Hat is a version of the Linux operating system).

The line following the comments provides the name of the class that is defined.
The convention used here for naming classes is that the identifier is singular
rather than plural and has an initial capital letter. The name of the class is also the
name of the file containing the definition, of course. So in this example the class
is defined in the file Duck.java and the first line of the definition must be:

public class Duck {

The .java file can also import other libraries at this point if they are
needed – these are in fact other class definition files – an idea you have met
when including the library for reading input.

It is also often useful to include clear comments to indicate the meaning of
each part of the file. Admittedly, it is not strictly necessary in such a simple
example as the one in this chapter, but it is a good habit to get into.

The remainder of the definition, after these initial comments and the rest of
the preamble, provides the code that actually implements the class. In this file
it is customary to list the attributes first, followed by the methods. It is impor-
tant to remember that a Java class is split into two parts; rather like people class-
es have a public and a private side. We have seen this split before, but now is
the time to understand exactly what’s going on.

Attributes
Once again, this is something that we looked at quickly way back in Chapter 6.
This section just summarises that slightly more formally.

An attribute is some value of interest that needs to be stored about an object.
This will usually be some value or feature that is relevant to some problem that
is being solved. The attributes of a class are simply listed in the first part of the
definition; this involves specifying the identifier of the attribute and its type.
The syntax is as expected:

�visibility� �type� �identifier�;

Here, �visibility� denotes which components of a program can access the
attribute; there are three levels of visibility (or, more formally, scope), and we
will examine two of them (public and private) in more detail a little later.
More often than not most attributes have private scope, and that is the conven-
tion that we will use.

The same guidelines apply to the choice of identifiers for attributes as applied
to the choice for variables. The identifier should be short and concise but should
still convey its meaning. The type of the attribute can be any of the types that
are available for variables. In more complicated programs the type can also be
another class to allow for the cases that we have seen where an object type has
an attribute that is itself another object type.

With the attributes defined, it’s on with the methods.

Methods
When analysing a problem, three pieces of information were determined about
each method required for an object type. Not surprisingly, the same three pieces

A first class 139

of information are required to specify a method in a .java file. These are the
name of the method, the type of the value that it determines (if any), and
the types of any values that it processes (the parameters).

The format for declaring a method is not unlike the declaration of an attribute:

�visibility� �type determined� �name of method� (�types of values processed�)

Again, �visibility� corresponds to the method’s scope (public or private),
and it is usually (but not always) the case that a method has public scope.

This definition itself provides a complete definition of the method. For exam-
ple we will soon meet a program that tracks ducks on the pond. It stores their
position and often calculates how far they have strayed from a particular point.
A method to determine a duck’s distance from a point might be declared:

public double distanceFrom (int dx, int dy)

This should, of course, be extended with a suitable comment if something is not
absolutely clear.

The types and identifiers of values processed by the method are specified in
a comma-separated list; if there are no values this list is just left blank (but
the brackets remain). The values inside the brackets are called the parameters
of the method, or sometimes the arguments. A method may also automatically
make use of any of the attributes in the private part of the class (and also any
of the other methods); the parameters are used to provide additional values.
The type of value that the method determines is called the return type of the
method.

All this means that the method definition can be dissected. It tells us that the
method determines a floating-point value, is called distanceFrom and takes
two integer values as parameters. Even though there is no comment, with some
knowledge of the likely application we can deduce that this method calculates
the distance that a duck is from a particular point on the pond, with the distance
being determined as a floating-point value.

Some methods do not return a value. This explains the need for a data type,
void, that indicates this. A method that does not return a value is defined as if
it was returning a void value. So:

public void changeName (String newName)

defines a method that changes a duck’s name, a process that does not involve
returning an interesting or useful value. This is a void method.

A definition of a method contains a lot of information. This information
is vital for the programmer who will be writing programs that will make use
of the class and its methods. A programmer must be able to read a class defini-
tion file and understand precisely what it conveys about the interface of
the class.

Public and private data
As we have said, a .java file defining a class is, by convention at least, split into
two parts. These two parts specify the attributes and methods that a class pos-
sesses. We have also mentioned a special property known as scope. We shall
now discuss public and private scope (there is a third, protected, which we
will look at briefly in the very last chapter).

140 How to program using Java

1 If we allowed the ducks to go upwards we would soon be embroiled in the three-
dimensional version of Pythagoras’ theorem. That alone is reason enough to simplify the
problem.

The distinction between these two is straightforward. Anything defined to be
public is available to any program that might make use of the class, while any-
thing defined as private is available only to the class itself.

This is a very powerful mechanism. It means that, as long as the public part
of the class (the interface) remains constant, the private part can be changed if
needed. This means that a programmer using the class needs only know about
the class’s public face; the private face remains hidden and can be changed.
At the same time, the programmer working on the class can change the details
of the private part, perhaps to implement something more efficiently, without
risking any unpleasant effects on programs that use the class.

An analogy would be the controls of a car. The normal controls – the steering
wheel, pedals, handbrake, and so on – remain constant and form the public
interface to the car’s engine. Any changes that, say, a mechanic might make to
the engine itself are totally independent of this interface; anything that changes
in the engine is private and is something that the driver doesn’t need to know
anything about. The public interface of the car always works in the same way,
and this should not be altered by any changes made to the engine.

The convention used in this chapter (and throughout this book) will be that
attributes are always defined with private scope, and methods usually with
public scope. This is not required, but it is easily the most common approach. It
also allows for a powerful and secure mechanism called data hiding, as we will
see later in Chapter 13.

Finally, let’s define some attributes and methods!

Attribute and method definitions
We have taken a theoretical look at attributes and methods, and discussed why
they are usually split between having private and public scope respectively.
Now it would make sense to define some attributes and methods and see them
in practice.

We shall return to an earlier example, which we first saw in Chapter 6 – a
class to represent a duck. Recall that, for Mr Martinmere’s purposes, a duck has
a name, age, and value. These would be stored as attributes – name as a
String, age as an int, and value as a double. Since all the attributes we
expect to encounter in this book are private, their declarations would be:

private String name;
private int age;
private double value;

Let us extend the duck class somewhat; since each duck is permitted to
waddle freely about the reserve, we can provide attributes to store the duck’s
location, should Mr Martinmere ever need to track them. Assuming all the
ducks are on the ground,1 we can achieve this with two attributes, storing the
duck’s x and y position as int values (double would also be acceptable, but
it’s unlikely we’ll even need to get down to that degree of accuracy):

private int x, y;

A first class 141

Since attributes tend to be found at the top of a source file, so far our class will
look something like this:

// History block

public class Duck
{

private String name;
private int age, x, y;
private double value;

// Methods
}

Next we move onto the methods. It is usually a good idea to have methods
which allow access to at least some of the private attributes (known as accessor
or selector methods). We will look at this in more detail in Chapter 13, but for
the moment we’ll just add a few likely methods.

The methods that a class would have depends, of course, on the needs of the
programs that would use the class. In the current example, the Duck class will
be extended with a few possibilities:

● a method to do nothing more than return the duck’s age (an accessor
method);

● a method to display the duck’s name and position neatly;
● a method to determine how far away the duck is from a particular position

(this position would be provided as two parameters, one for the x coordinate
and one for the y coordinate);

Each method can be defined from its description, provided we know the
type of value it will return, and the types of any parameters it takes. For exam-
ple, we know the duck’s age is stored as an int value, and such a method will
take no parameters, so the declaration of a method to access this attribute
will be just:

public int getAge ()

The other methods would be declared as follows:

public void printNeatly ()

This method, called printNeatly, does not require any parameters and does
not return a value.2

public double distanceFrom (int some X, int some Y)

This method requires x and y coordinates as parameters, and returns a double
value.3

2 There is a common convention among Java programmers that each class should
have a method called toString () that provides much the same information as the
printNeatly () method here. Defining such a method allows us to pass an instance of
the class to the System.out.print () and println () methods. In fact, a default version of
the toString () method is defined for all classes. Why not write a simple program to see
what this default version does?

3 There would be a loss of precision if the calculation returned an int value – how far is (1,1)
from (0,0), for example?

142 How to program using Java

So far we have the definitions of the methods; the implementations
themselves will need to be added later. For the moment the class looks like this:

public class Duck
{
// Attributes

private String name;
private int age, x, y;
private double value;

// Methods

public int getAge ()
{
// implementation here
}

public void printNeatly ()
{
// implementation here
}

public double distanceFrom (int someX, someY)
{
// implementation here
}

}

Remember that while the Java is correct in this example this is not a complete
definition of the class. The implementations of the methods are still missing but,
before adding these, there is one more method to include.

The constructor
There is one last method to add. We have seen that to declare an object the pro-
grammer specifies the type of the object to be declared, provides an identifier,
and calls the constructor:

�class name� �identifier� � new �constructor�();

The constructor is the special method that takes care of creating an instance
of the class, an object. The name of the class and the constructor are, obviously,
the same. If the constructor has been defined to take parameters these are also
provided in the brackets. The name of the constructor should be written in
exactly the same way as the name of the class given at the top of the file; this
includes the case of the letters. Any mistake will mean that the method is not
recognised as the constructor.

Happily most of what the constructor needs to do is taken care of auto-
matically. All the allocation of memory happens behind the scenes and the
programmer does not need to worry about it. The constructor may also assign
default values for some of the attributes; comments should be added to the
header file to document this (and explain the values that are used) if this is
the case. It is very poor if the implementation of the constructor (or any
other method for that matter) has to be examined to determine exactly what
it does.

A first class 143

In this case the constructor does not take any parameters.4 The declaration is just:

public Duck () // Constructor

The addition of a constructor gives an almost complete definition file for the
Duck class, but now some implementations are needed.

The implementations
The final part of defining a class is to add Java statements that implement the
methods. Any Java statements can be used, even ones that we haven’t met yet!
Let’s take each of the example methods in turn.

public int getAge ()

This method does nothing more complicated that finding the value of an attrib-
ute and passing it back (or “returning”) it to whatever called the method. The
statement to do this in Java is simply return so:

public int getAge ()
{

return age;
}

The next method:

public void printNeatly ()

needs to do some output. The exact format of this output would probably be
determined by the application, but some sequence of System.out.print
lines will be needed, such as:

public void printNeatly ()
{

System.out.println ("Name: " + name);
System.out.println ("Position: " + x + ", " + y);

}

This method does not return a value. The statements are simply executed in the
order shown.

The next method requires a calculation:

public double distanceFrom (int someX, int someY)

A small amount of geometry is needed, in fact Pythagoras’ theorem. Without
boring you with the mathematical details, the required calculation is:

public double distanceFrom (int someX, someY)

{
return Math.sqrt ((double) (((someX – x) * (someX – x))

+ ((someY – y) * (someY – y))));
}

4 Actually, a constructor can take parameters. An obvious possibility is some initial values
for the attributes of the class. If this is required the prototype has the types of the parame-
ters specified in the brackets as you might expect.

144 How to program using Java

This method also makes use of the built-in Java function for finding a square
root. There are lots of other useful maths functions to be found in the same
place.

The final method that needs to be implemented is the constructor. Most of
what the constructor does is done behind the scenes automatically and in many
cases like this there is no need for anything other than an empty implementa-
tion. Here the constructor is nothing more than that:

public Duck ()

{

}

It is worth pointing out that Java will provide a constructor just like this one
if no constructor is specified in the class. Defining your own constructor is a
good habit to get into, but it’s not always disaster if you leave it out. If the
attributes of the class are all of primitive types (integers, characters, Booleans,
and so on), and you are happy with the compiler default values, then not
including a constructor (or else including an empty constructor) will not
cause any major problems. However, if you need to initialise an object, or a
primitive variable to a non-default value, it is important that you include code
to achieve this in the constructor.

This gives the final definition of a simple Duck class that might be used
in some sort of duck-tracking application. A small final change is that the
integers representing the position have been separated out; it is usually a good
plan to group together connected attributes in this way. The class definition
is now:

/* Duck.java – A simple Duck class.

Author : AMJ
Date : 31st December 2002
Tested on: Red Hat 7.3, JDK 1.4.0

*/

public class Duck
{

// Attributes

private String name;
private int age;
private double value;
private int x, y;

// Constructor

public Duck ()
{
}

// Methods

public int getAge ()
{

return age;
}

A first class 145

public void printNeatly ()
{

System.out.println ("Name: " + name);
System.out.println ("Position: " + x + ", " + y);
return;

}

public double distanceFrom (int someX, int someY)
{

return Math.sqrt ((double) (((someX – x)*(someX – x))
+((someY – y)*(someY – y))));

}

}

Defining a class
That’s all there is to it. Once the class has been defined we can start working
on programs that use the class, which is what we’ll come to in the next chapter.
But first, some examples!

Example 1 – Bruce’s library
Bruce has set up a small library in his hut. He naturally wants to keep records of the
ducks who borrow his valuable books, and he has decided to develop a small Java pro-
gram to help in this task. As a first stage he has decided to create a simple class to store
details of the ducks who borrow. The first attempt will be limited to a single simple
method to display the details of one duck borrower.

What does the class implementation file look like?

The borrowers from Bruce’s library are all ducks. We have already seen a class
for storing the details of ducks in the chapter, so it might seem that this class
would form a good starting point. But this is probably not so. The class in this
chapter was developed for a particular application; the main aim was to track
the ducks as they moved around on the pond. The task of keeping details of
their book-borrowing activities is a very different thing indeed.

It is possible to generalise Bruce’s requirement, and to develop a class for
things that borrow. This is a reasonable step because, as we have seen before,
there are many applications where things are borrowed by other things and
applications where things are borrowed by ducks are, it must be admitted, rare.

146 How to program using Java

Bruce is obviously interested in the name of his borrowers, so we might start
the definition of the attributes with:

public class Borrower
{

private String name;

This is fine, but it would not be possible to identify an individual borrower if
two had the same name. This is a common problem, and it is quite common to
work around it by introducing some other value that is guaranteed to be
unique. An obvious addition here is some sort of borrower number:

public class Borrower
{

public String name;
public int number;

That should be enough for the attributes. Two methods are needed in this first
version; one simply displays the details of a borrower and the other is, of
course, the constructor. In this example the constructor need do nothing very
much:

public Borrower ()
{
}

While the other method is little more that a pair of statements to print the
required values:

public void print ()
{

System.out.println ("Borrower: " + name);
System.out.println ("Number: " + number);

}

This gives the final version of Bruce’s first attempt at a class:

public class Borrower {
private String name; // Name of borrower
private int number; // Unique borrower number

public Borrower ()
{
}

public void print ()
{

System.out.println ("Borrower: " + name);
System.out.println ("Number: " + number);

}
}

Example 2 – Cricketing ducks
The ducks continue to enjoy cricket. They naturally want to keep a range of statistics
about each game, so that they can spend the long winter months arguing over who is
the best duck cricketer.

Buddy has started to develop a program that will process the details of each duck’s
performance. He plans to store the number of innings each duck has had, the number of

A first class 147

runs that have been scored, the number of times the duck has been “not out”, the
number of wickets taken and the number of runs conceded.

The final program will obviously be quite complex, so Buddy has decided to start with
a much simpler class. This class will simply store each of the required values, and will
provide a method to display them and another method to prompt a user to enter them.
Implement Buddy’s class.

The class will obviously need to store the name of the duck which is a string;
the numeric attributes of this class are all integers, so this section of the class is
straightforward:
private String name;

private int innings;
private int notOuts;
private int runsScored;

private int wickets;
private int runsConceded;

Entering the values is also not too complicated. We will assume for the
moment that there is no requirement to validate the values that are entered, so:

public void enterStats ()

{
System.out.print ("Enter name : ");
name = Console.readString ();

System.out.print ("Enter number of innings: ");
innings = Console.readInt ();
System.out.print ("Enter runs scored: ");
runsScored = Console.readInt ();
System.out.print ("Enter not-outs: ");
notOuts = Console.readInt ();
System.out.print ("Enter wickets taken: ");
wickets = Console.readInt ();
System.out.print("Enter runs conceded: ");
runsConceded = Console.readInt ();

}

Obviously we have to import the package containing the Console class
before this program will compile!

A method to display the values would also be straightforward; it need be
nothing more than a sequence of suitable print statements. But here is a more
“Java-ish” way of achieving this.

A common approach is to include a method called toString in a class. This
is used to return a single string that represents an individual object. This string
can be useful in all sorts of ways to programs making use of the class, or can
simply be displayed. The requirement here is only the latter, but this approach
would be common among experienced Java programmers.

The definition of the method looks not unlike the definition of a method to
print the values:
public String toString()

{
String stats = "*** Stats for " + name + " ***";
stats += "\nInnings : " + innings;
stats += "\nRuns scored : " + runsScored;

148 How to program using Java

stats += "\nNot-outs : " + notOuts + "\n";
stats += "\nWickets taken : " + wickets;
stats += "\nRuns conceded : " + runsConceded;
return stats;

}

This gradually builds up the string stats to form a string5 that contains a
summary of all the information. This method can then be used in another that
will generate this string and display it:

public void printNeatly ()
{

System.out.println (toString ());
}

With the class written, the question arises of how Buddy can test his meth-
ods. The solution is simple; he can add a main method to the class and run it as
a program; this version simply reads in the details for one object (representing
one cricketing duck) and then displays them.
public static void main (String args[])

{
CricketingDucks cd � new CricketingDucks ();
cd.enterStats ();
cd.printNeatly ();

}

The class can now be run as a program:
tetley% javac CricketingDucks.java
tetley% java CricketingDucks
Enter name: Buddy
Enter number of innings: 10
Enter runs scored: 200
Enter not-outs: 1
Enter wickets taken: 10
Enter runs conceded: 300

*** Stats for Buddy ***

Innings : 10
Runs scored : 200
Not-outs : 1

Wickets taken : 10
Runs scored : 300

The complete definition of the class is worth looking through in some detail
to make sure that you understand what’s going on. It illustrates most of the
basic Java concepts that we have covered so far, so take some time to go
through it.
/* CricketingDucks.java – Program to store cricket statistics.

Author : AMJ
Date : 17th April 2003
Tested on : Linux (Red Hat 7.3), JDK 1.4.0

*/

5 The \n inserts a newline into the string.

A first class 149

import htpuj.*;

public class CricketingDucks

{
private String name;

private int innings;
private int notOuts;
private int runsScored;

private int wickets;
private int runsConceded;

public CricketingDucks ()

{
innings = 0;
notOuts = 0;
runsScored = 0;
wickets = 0;
runsConceded = 0;

}

public void enterStats ()

{
System.out.print ("Enter name: ");
name = Console.readString ();

System.out.print ("Enter number of innings: ");
innings = Console.readInt ();
System.out.print ("Enter runs scored: ");
runsScored = Console.readInt ();
System.out.print ("Enter not-outs: ");
notOuts = Console.readInt ();
System.out.print ("Enter wickets taken: ");
wickets = Console.readInt ();
System.out.print("Enter runs conceded: ");
runsConceded = Console.readInt ();

}

public String toString ()

{
String stats = "*** Stats for " + name + " ***";
stats += "\nInnings : " + innings;
stats += "\nRuns scored : " + runsScored;
stats += "\nNot-outs : " + notOuts + "\n";
stats += "\nWickets taken : " + wickets;
stats += "\nRuns conceded : " + runsConceded;
stats += "\n******************";

return stats;
}

public void printNeatly ()

{
System.out.println (toString ());

}

150 How to program using Java

public static void main(String args[])
{

CricketingDucks cd � new CricketingDucks ();
cd.enterStats ();
cd.printNeatly ();

}

}

11.1 Bruce’s Borrower class would be much more usable if it were possible
to assign values to the attributes in the first place! Write some methods to do
this – you might even consider using the constructor for part of this exercise.

11.2 Now extend the class again so that the user can enter values at the
command line. Do this with interactive input, which we saw in Chapter 9.

11.3 Buddy’s aim is to create a program that will work out the duck’s batting
and bowling averages. Extend the class with a method that calculates the bowl-
ing average (the number of runs conceded divided by the number of wickets).
Remember to extend the toString method to contain this new value, and use
the main method to test your new method.

11.4 Following the same procedure, add a method to calculate the batting
average. This is the number of runs divided by the number of completed
innings (the number of innings less the number of not out innings).

11.5 Now write a program that makes use of the class. The program should
read in values for each of the attributes and should display the bowling and
batting averages.

A first class 151

A Java class is defined in a .java file. This file contains the descriptions of all
the attributes of the class and the descriptions and implementations of all the
methods. It is customary to define the attributes as private members of the class
and methods as public; we will see why this is important in the next chapter.
It also customary to group the private and public parts of the class together; this
serves to make the class definition easier to understand.

You should now be able to create and use simple Java classes. You should also
understand how to provide a class with a main method, a method that allows
a programmer to carry out some basic testing.

The idea of data hiding has been mentioned in this chapter, and will be exam-
ined again in Chapter 13. Before then, however, we will look at reusing objects
that we have defined in programs, or even other classes!

152

Classes and objects 153

You’ve now seen quite a lot of Java. You’ve seen how to create a class and how
to create instances of the class (objects), and how to use these objects in very
simple programs. This has all been a bit informal, though, so the time has come
to have a proper look and to get some practice in writing your own programs.
This chapter and the last one start you on the way to doing that.

You might want to go and take a quick look again at Chapter 6 when we had
a first look at how to declare and use a class in Java, and at the chapters that
have described how to do input and output. We’re now going to build on those
ideas to create complete object-oriented programs.

This chapter takes the basic Java statements that you have learned up to this
point and shows you how the programming ideas that you have used and prac-
tised so far can be extended to produce Java programs that make use of classes
and objects. After reading this chapter you will understand how to create and
use objects in a Java program. You should be able to read a Java class’s imple-
mentation file, understand it, and make use of the class that the file contains in
your own programs.

There are two stages to developing an object-oriented program. The first is to
define the class and the second is to develop the program that uses it. This chap-
ter is interested in the second of these stages; we’ll concentrate on reading the
definition of a class (found in the.java file) and writing a program that uses
it. We looked at the other stage in the previous chapter, of course.

The ability to split programming into these to fairly distinct pages is, of
course, an advantage of object-oriented programming; a programmer can make
use of class that some other programmer has written, and these two program-
mers can be working at the same time. Obviously the programmer using the
class must first understand exactly what the class does and how it works.

154 How to program using Java

A Java .java file describes amongst other things the class interface. This aspect
of the file is the important one in this chapter; you will need to be able to examine
the .java file defining a class and so work out how to make use of the class in
your programs. You will normally be able to see all the details of the implementa-
tion of the class too, but this is not important if all you need to do is use the class.

It is also possible to use a class if only the .class file of the class is available.
This can happen when for some reason the programmer who has written the
class does not want a programmer using the class to have access to the details
of the class’s implementation. In this case, of course, the class interface will have
to be specified in some accompanying documentation. We will assume here that
the .java file is available, so we start by seeing how to understand its contents
and so extract the class interface.

We saw a simple class defined in Chapter 6, and we defined a slightly more
complicated class in the last chapter. Both of these examples defined a simple
class to store details of ducks, and included suitable attributes and methods. In
general, the basic format of a .java file defining a class is:

public class �classname� // the name of the class

{

// definition of attributes
// definition of methods

}

We saw in the last chapter that it is customary, but not compulsory, to define
all the attributes of the class before defining the methods that make use of them.
Both can be defined to be either public or private. The distinction is that anything
defined as public is available to any program that makes use of the class, while
anything defined as private is available only within the class itself. It follows
that for the purposes of writing a program that uses a class we will be most
interested in the things that are defined as public.

A common practice is to define all attributes as private and all methods as
public. This allows the programmer to control access to the values of the attrib-
utes and so allows for a powerful mechanism called data hiding. We will keep to
this convention in all the programs in this chapter, and indeed in all the pro-
grams in this book, and you are recommended to do the same. The advantages
of data hiding are explored in more detail in Chapter 13.

So, the public part of the class normally specifies the methods that can be
used on instances of the class (objects). It may also specify attributes but this is
unlikely and is usually bad programming practice and so best avoided. The
specification of a method tells a programmer using the class the name of the
method, the type of value it returns (if any), the types of any values that it
requires as parameters (if any), and finally provides one or more Java state-
ments that carry out the method’s task.

The file itself should be sufficient to explain completely and unambiguously
what can be done with the class. Anything that is not totally clear in the .java
file should always be explained by suitable comments.

Preparing to use a class
A program that uses a class is a said to call the methods of the class. It might be
called the calling program of the methods. The program must be in the same

Classes and objects 155

directory as the files defining the class, and will require access to a suitably
compiled version of the class – the .class file.

This means that the first stage in preparing to use a class is to obtain the
.class file defining it. If this has not been provided, the .java file must obvi-
ously be compiled to produce it. This is done in the usual way, for example:

tetley% javac someClass.java

You have in fact been doing this already if you’ve been making use of our
Console class. You had to take the .java file of this class and produce the cor-
responding .class file. What we are going to do now is very much the same
thing.

It is, of course, possible that there is some error in the definition of the class
that will prevent it from compiling. If this is the case then these errors must
obviously be traced and corrected before any program using the class can be
written. There is clearly no point in spending effort on writing a program that
makes use of a class that doesn’t work properly!

This means that you now need to be able to compile programs that are stored
in more than one file; as a minimum you will have one file containing the
definition of the class and one containing a program. While you don’t need to
know what’s in this class definition file you do need a copy of it, probably in
the same directory as your program. Everything should be straightforward,
assuming that the .class file is stored in the same directory as your program
but, as you’ve probably come to expect by now, the way in which you compile
programs that use a class can be slightly different on different Java systems. As
always I’ll have to refer you to your Local Guide to confirm all the details and to
provide any extra information you need.

Reading the definition
The first thing to do before trying to use a class is obviously to read through the
definition. The file should start with a suitable header block of comments that
will give you the general idea of what the class is for and so on. Then, assum-
ing that it follows the usual format, you should find definitions of the attributes
and methods.

You should take note of the exact name of the class, the types of any
attributes, and all the details of the methods. Later on you’ll be able to read the
statements inside the methods to see what they do, but everything should be
clear from comments. If anything isn’t totally clear we know by now that it’s
probably a good idea to seek suitable clarification before attempting to use
the class.

Once you understand what the class is and what it can do the first step in
writing a program is obviously to declare an object.

Declaring an object
The first stage in using an object (an instance of the object type defined in your
class) is obviously to declare one. The format of the declaration is something
we’ve met a few times before; we simply call the class’s constructor.

An object declared in this way is effectively the same thing as the variables
you have used before. The effect of defining a new class has been to create
a new type of variable. The only difference really is in the format of the

156 How to program using Java

declaration; with an object it is necessary to explicitly call the constructor. So we
might declare a Duck object:

Duck elvis = new Duck ();

As with any variable more than one class instance can be declared in a single
declaration:

Duck elvis = new Duck(), buddy = new Duck();

It makes sense to check the comments to see whether or not the constructor
assigns initial values to each attribute of the object, and it might make sense to
add a comment to the declaration to indicate what these are.

Now, with an object declared it is time to start working with the values. The
attributes of the class will be private and so programs cannot access them
directly. The way to access these values is through methods, and hopefully a
collection of methods will have been provided for this purpose.

Calling a method
We’ve used methods before, for example, when we needed to set the string that
was displayed on Bruce’s sign, but here is a quick recap of the syntax for call-
ing them. The .java file will provide a list of all the methods available, and
will include all the details that we will need.

A method is called on an object in a statement of the form:

�object name�.�method name� (�parameters�);

This is not as complicated as it looks! The identifier of the object has the name
of the method appended to it with a full stop between. The parameters are then
specified in brackets after the method name. If there are several parameters they
are separated by commas; this time the brackets contain the identifiers of
the parameters and never their types. If there are no parameters the brackets
must still be present but there is nothing between them.

An example should make this clear. Yet another simple Duck class designed
for some duck tracking application similar to the one defined in the last chap-
ter might include this set of methods:

public int getAge (); // return the duck’s age
public void printNeatly (); // print all details of a duck
public double distanceFrom (int, int); // return distance from

// a point
public boolean atPosition (int, int); // true if duck is at

// position provided

Assuming that the program had declared:

Duck elvis = new Duck ();

the statement to call the printNeatly method to display Elvis’s details
would be:

elvis.printNeatly ();

This method has the return type void indicating that it does not return a value
(it’s a void method). There are no parameters, and so the brackets are empty.

The other three methods, on the other hand, do return values, and the final
two do have parameters.

Classes and objects 157

The return values are presumably of interest to the programmer using the
class and so they should be stored in a suitably declared variable of the appro-
priate type. This gives a slightly longer form of a call to a method:

�variable� � �object name�.�method name� (�parameters�);

Another example – to use the getAge method to retrieve Elvis’s age and
store it in a suitable program variable the statement is:

int age;

age = elvis.getAge ();

This method has no parameters, and so the brackets are present but, as usual
with methods like this, they contain nothing. This assignment could also have
been combined with the declaration of the variable to provide an initial value
for that variable:

int age = elvis.getAge ();

It’s worth pausing to mention that calling a method like this that returns a value
with nowhere to store the value:

elvis.getAge ();

is very probably an error. It is almost always a very bad idea to ignore a value
that a method is returning.

If a method requires parameters the values are included in the brackets. If
there is more than one value all the values must be provided in the correct order
(the types of the parameters must match the types specified in the method def-
inition). The distanceFrom method returns the distance that a duck is from a
particular point. To find out how far Elvis is from the point (5, 3) and store that
distance in a program variable called away the statement would be:

double away = elvis.distanceFrom (5, 3);

This is obviously different to:

double away = elvis.distanceFrom (3, 5);

which refers to the point (3, 5). The correct number of parameters must be
provided in the order specified in the method definition.

This call to the method would result in a compilation error:

double away = elvis.distanceFrom (4); // Error!

The error here is simply that the number of parameters does not match with the
number specified in the method definition. Obviously the compiler cannot spot
if the values have been provided in the wrong order; all it can check is the
number of values provided and their types.

So with the ability to call all the methods of the class it should be possible to
start on a program. But first an important warning.

A warning about assignment
Classes are obviously very similar to the standard data types that you have
used in your programs so far. They are used in much the same way and much
of the syntax used with them is the same as is used with, say, integers. The
important difference to remember is that the .java file defines absolutely

158 How to program using Java

everything that your programs can do with an instance of the class. The general
rule is that if it’s not defined in the .java file, and specifically in the public part
of the .java file, there’s no way to do it in a program.

There is one case where this is particularly important. It is often very
tempting to want to assign the values of all the attributes of one instance of a
class to another. This does not work as might be expected! For example, this
code is totally legal, but may well not behave as the programmer intended.1

Duck elvis = new Duck();
Duck buddy = new Duck();
elvis.moveTo(10,10); // change position
buddy = elvis;

This would indeed change the second duck’s position to (10, 10) but some-
thing more subtle has actually happened. The two objects are now effectively
the same; by this, we mean that the names elvis and buddy now both refer
to the same location in the computer’s memory. This really is rather subtle, and
is something that you don’t really need to worry about for now. The problem
now is that a later statement such as:

elvis.moveTo(10,11);

would affect both buddy and elvis, since the attributes of both are stored in
the same place. It is important to remember that attributes must be copied using
only the methods defined in the class.

Using a class
A class effectively extends the range of data types that you have at your dis-
posal as you write your programs. An examination of the .java file gives you
all the information you need in order to use the class. After compiling the class,
objects are declared in a similar way to variables.

Methods are called on an object by joining the name of the method and the
identifier of the instance with a full stop. If a method requires parameters, the
correct number must be provided in the expected order and must match
the expected types.

This really is not as complicated as it might seem! Now it’s time for some
examples of how this all works.

1 A particular irritation is that in C�� using an assignment like this has a rather different
effect, copying the values of the attributes.

Classes and objects 159

Example 1 – A simple duck class
Mr Martinmere likes to keep track of the locations of all his valuable ducks. He gets very
concerned if they stray too far away from the edge of the pond; if they do he has to think
of some way to fetch them back. He has purchased a prototype tracking device, which he
has fitted to Elvis for testing purposes.

Mr Martinmere wants a small Java program that interfaces with the tracking device.
It would be incredibly useful if the program was easy to extend in future. Bruce has
developed a class to store details of the ducks. The .java file is:

/* Duck.java – A simple Duck Class.

Author : Bruce, after AMJ
Date : 31st December 2002
Tested on : Red Hat 7.3, JDK 1.4.0

*/

public class Duck
{

// Attributes

private String name;
private int x, y;

// Constructor

public Duck ()
{
}

// Methods

public void moveTo (int newX, int newY)
{
x = newX;
y = newY;

}

public void setName (String newName)
{
name = newName;

}

public void printLocation ()
{
System.out.println ("(" + x + ", " + y + ")");

}

160 How to program using Java

public void printNameAndLocation ()
{
System.out.println (name + " is at " + "(" + x + ", " + y + ")");

}

public String getStatus ()
{
if (distanceFrom(0,0) � 10.0) {
return name + " is too far away!";

}
else return name + " is in range.";

}

public double distanceFrom (int atX, int atY)
{
return Math.sqrt ((double) ((atX – x) * (atX – x))

+ ((atY – y) * (atY – y)));
}

}

Write a program that declares an instance of the class and then prompts the user to
enter its position and name. Use the printNameAndLocation method to print the
position neatly and the getStatus method to display a warning if the duck has
strayed an alarming distance away.

You will obviously need the .java file for the class in order to complete the
exercise. It’s available on the web site to save you typing it in. Getting hold of a
copy in this way is much the best approach since you avoid all sorts of possible
problems that might be caused by typing errors.

The first step in developing this program is to compile the class to produce
the .class file. The precise steps required will naturally depend on your
particular Java system, but something like:

tetley% javac Duck.java

is probably required.
This step will also verify that you have copied the file correctly, or at least that

your version compiles correctly. Any errors that might be reported should
obviously be corrected before carrying on. A missing bracket is much easier to
spot and correct at this very early stage and it is quite senseless to start writing
a program that makes use of a class that does not compile.

The declaration of the Duck objects is simply:

Duck aDuck = new Duck();

A simple dialogue can be used to get the user to enter the name and initial
position of the duck. Some temporary variables are needed to store these values
before they are saved in the object instance; there is no way to access the attrib-
ute values themselves as they are defined as private. If we use the Console class
we have already encountered, then the code for the dialogue might be:

int x, y;
String name;

// get details of duck

System.out.print ("Enter the duck’s name: ");
name = Console.readString ();
System.out.print ("Enter " + name + "s x position: ");
x = Console.readInt ();

Classes and objects 161

System.out.print ("Enter " + name + "\'s y position: ");
y = Console.readInt ();

These values are then copied into aDuck using the method calls:

aDuck.setName (name);
aDuck.moveTo (x, y);

Once the values have been entered and saved the location of the duck can be
printed:

aDuck.printNameAndLocation ();

And a similar call to the getStatus method will display a status message.
Now, as Mr Martinmere often spends time walking around his reserve, it

would of course be incredibly useful for the status messages to appear on
Bruce’s sign, since Mr Martinmere’s desktop computer can be several hundred
yards away! This is actually very simple to add to the program; the
printNameAndLocation method provides a suitable string that can simply
be displayed on Bruce’s sign.

It’s so easy that we might as well do it 2. The complete program would be:

/* DuckTracker.java – Mr Martinmere’s program to
keep track of his ducks.

Author : AMJ
Date : 31st December 2002
Tested on : Red Hat 7.3, JDK 1.4.0

*/

import htpuj.*;

public class DuckTracker
{
private Duck aDuck;

public DuckTracker ()
{
aDuck = new Duck ();

}

public void readDuckInfo ()
{
int x, y;
String name;

System.out.print ("Enter the duck’s name: ");
name = Console.readString ();
System.out.print ("Enter " + name + "'s x position: ");
x = Console.readInt ();
System.out.print ("Enter " + name + "'s y position: ");
y = Console.readInt ();

aDuck.setName (name);
aDuck.moveTo (x, y);

}

public String getStatus ()
{
return aDuck.getStatus ();

}

2 We would need the class file for the sign to, of course.

162 How to program using Java

public static void main(String args[])
{
DuckTracker tracker = new DuckTracker ();
Sign brucesSign = new Sign ();

// get ducky details

tracker.readDuckInfo ();

// print details

brucesSign.setMessage (tracker.getStatus ());
brucesSign.display ();

}
}

This program highlights another advantage of using a class. The program
does quite a lot (and behind the scenes some of it is quite complicated3) but it
is still reasonably short; a lot of the processing is taking place in the implemen-
tation of the methods. Also, assuming you understand what they achieve, you
can use methods that use programming techniques that you yourself have not
learned. The method to print a warning if a duck moves too far away certainly
uses Java that you have not seen yet.

If you look again at the definition of the class you will see that this program
does not use all of the methods defined in this class; this is quite normal. The
class will be developed so that it can hopefully be used in many programs and
it is far from likely that any one program will need to use all the methods.

Example 2 – Coots have classes too
Mr Martinmere also uses programs to keep track of the coots on the pond. He is especially
interested in the value of each coot, something that is determined by a range of factors
combined in incredibly complex formulas. He wants a program that will take the details
of two coots and will calculate and display the difference in value between the two.

Bruce has developed a Java class to store details of coots. Its definition is:

/* Coot.java – A simple Coot Class.

Author : Bruce, after AMJ
Date : 31st December 2002
Tested on : Red Hat 7.3, JDK 1.4.0

*/

public class Coot
{
// Attributes

private String name;
private int x, y;
private int age;
private int height; // in cm
private double weight; // in oz

// Constructor

public Coot()
{
}

// Methods

3 Look at the implementationn of the distanceFrom method, for example.

Classes and objects 163

public void print()
{
System.out.println (name + ": Age: " + age + ", Height: "

+ height + ", Weight: " + weight);
}

public void moveTo (int newX, int newY)
{
x = newX;
y = newY;

}

public void setName (String newName)
{
name = newName;

}

public void setFactors (int newAge, int newHeight,
double newWeight)

{
age = newAge;
height = newHeight;
weight = newWeight;

}

public double getValue ()
{
if (age > 1) {
return (height – weight) / age – 1;

} else
{
return 0;

}
}

}

Using the information from this file write the program that Mr Martinmere requires.
You can find an implementation of this class on the web site.

The program follows a pattern similar to the one in the previous exercise. The
mechanical step is much the same; the .java file defining the class is compiled
and the resulting bytecode (in the .class file) is placed in the same directory
as the program. The two required object instances (cootOne and cootTwo) are
declared in the usual way.

A similar dialogue would be used to get the values for the three relevant fac-
tors from the user and store them in temporary variables. There would then be
a method call to setFactors to set the attributes and determine the value, all
done without our knowing anything about the incredibly complex formulas
being used.4 It seems very likely that these factors correspond to three attrib-
utes in the private part of the class but there is no way to know this for certain.
In any event this internal detail is quite unimportant to someone using the class;
all the information needed is available without looking at the details of the
implementation. Care would be needed when using setFactors to make
sure that the parameters are supplied in the expected order; this order is given
in the comment and is age, then height, and then weight.

Similarly it seems likely that the value is stored as an attribute (it isn’t, as it
happens!) but again there is no way to be sure. What matters is that the

4 If you take a look, the formulas are not in fact that complex.

164 How to program using Java

getValue method returns the value and that the valueDifference method
has access to the correct figures. In fact for this program only the second of these
is needed (although we might expect that valueDifference makes use of
getValue (it does!); the difference in value can be printed simply:

System.out.println("The difference in value is " +
cootOne.valueDifference(cootTwo)
+ ".");

Of course this happens to be identical to:

System.out.println("The difference in value is " +
+ cootTwo.valueDifference(cootOne)
+ ".");

It would not matter which was used.
Again there are many methods and possibly many attributes in this class that

are not used. Also there are many details of the implementation of the class that
a programmer using it needs to know nothing about (for example, the imple-
mentation of the getValue method). These things are quite usual.

The final program would be:

/* CootComparator.java – Compares relative values of two coots.

Author : AMJ
Date : 31st December 2002
Tested on : Red Hat 7.3, JDK 1.4.0

*/

import htpuj.*;

public class CootComparator
{
private Coot cootOne, cootTwo;
public void readCoot (Coot c)
{
int age, height;
double weight;

// get details of first coot

System.out.print ("Enter the age of the first coot: ");
age = Console.readInt ();
System.out.print ("Enter the height of the first coot: ");
height = Console.readInt ();
System.out.print("Enter the weight of the first coot: ");
weight = Console.readDouble ();

c.setFactors(age, height, weight);
}

public double valueDifference ()
{
return Math.abs (cootOne.getValue () – cootTwo.getValue ());

}

public static void main (String args[])
{
CootComparator comp = new CootComparator ();
comp.readCoot (comp.cootOne);
comp.readCoot (comp.cootTwo);
System.out.println("The difference in value is " +

comp.valueDifference() + ".");
}

}

Classes and objects 165

12.1 Write a program using the Coot class from the second example that will
prompt the user to enter the details of a coot and will print the value of that
coot. The value should be calculated according to Mr Martinmere’s incredibly
complicated formulas. Remember that you can find the implementation of the
class on the web site.

12.2 Examine the following extracts from a definition of a class to store
details of geese. The implementations of all the methods have been removed.
Write down a full description of the methods that are available for this class.
What do you imagine is in the private part of this class? Does it matter that you
don’t have access to it?
public Goose ()
public void setName (String newName)
public void setAge (int newAge)
public void setWeight (double newWeight)
public String getName ()
public int getAge ()
public double getWeight ()
public double getValue ()
public void moveTo (int newX, int newY)
public double distanceFrom (int atX, int atY)

12.3 Write a program that uses the Goose class above. The program should
prompt the user to enter the name, age, and weight of a goose and should print
the value of the goose in a message of the form:

�Goose Name� is worth �Value�.

Assume that the Goose class is defined in the file Goose.java. You can find
an implementation of the class on the web site, or you can probably deduce the
implementation from the ones you have for ducks and coots.

12.4 Write another program that could be used to keep track of ducks. The
program should prompt the user to enter a duck’s name and current position.
The program should then display the distance the duck is away from the
Bruce’s shed, which is located at position (2, 5).

166 How to program using Java

This chapter has explained how to make use of Java classes in your programs.
The classes used have been quite simple but the basic ideas and syntax
remain the same for all more complicated classes. By making use of classes your
programs are now able to achieve quite complex results.

The process for using a class is straightforward. All that you need to do is
take the .java file and compile it to produce the corresponding bytecode in the
.class file. This done, the class can be used and instances (called objects) can
be declared. The syntax for declaring objects is very similar to that for declar-
ing variables of the other basic types such as integers, with the small addition
of a call to the constructor.

The operations that can be carried out on objects are defined in the .java file,
and a program may make use of anything defined to be public. A programmer
using the class has no need to know anything about the private parts of the
class or indeed anything about how the methods are implemented. All the
information that is needed is conveyed succinctly, accurately, and unambigu-
ously in the file. Where there is any possible ambiguity this should be resolved
with comments; it should never be necessary to examine the statements inside
the methods.

A particular advantage that you have seen of this approach in this chapter
has been that you have been able to make use of methods that use Java state-
ments and techniques that you have not yet learned.

You should now also have learned how to compile the file containing your
program together with a file containing the implementation of the class used in
the program. Of course most programs will make use of many classes, but the
ideas and the mechanical details are all the same.

We’ve mentioned the idea of data hiding a few times in these chapters.
Now it’s time to look at exactly what this is …

167

By now you should have had plenty of practice at writing simple Java programs
and classes. Some of these programs will have made use of classes developed
by other programmers and you should have become accustomed to the way
that Java defines and implements a class. The definition describes the public
interface to the class and also includes the implementations of the methods
themselves. In the last two chapters you got plenty of practice in developing
your own classes, and you should now be able to develop your own classes for
other programmers to use.

As you define a class you are specifying a number of things. One of these is
the attributes that objects of your class have, and another is the ways in which
programs can interact with and manipulate these attributes. It is important that
you retain control over the values of the attributes to guard against, for exam-
ple, incorrect programs setting them to invalid values. This chapter introduces
a mechanism to do just that; data hiding makes sure that you are always well in
control of the values of your attributes.

After reading this chapter you should understand how to implement simple
methods for Java classes to support data hiding. You should also understand
the concepts underlying data hiding and you should understand why this is
very important and how the separation of Java classes into public and private
parts allows programmers to implement this powerful mechanism.

168 How to program using Java

In the last chapter we saw some very basic types of method. Some of these types
are useful in all classes. Obviously every class needs a constructor, but there are
also two other types of method that are generally almost as important. Methods
are needed that allow a program to access the value of an attribute; these are
commonly called accessors (or selectors). Similar methods, usually called muta-
tors, are needed to allow a program to alter the value of an attribute.

There are, then, three basic types of method that will be found in most classes:

● constructor – the method that actually creates an instance of a class when it is
declared;

● selector – a method that allows access to a private value from within the class
by returning its value (sometimes called an accessor);

● mutator – a method that allows access to a private value of the class so that
that value can be changed.

These three types of method will be found in almost every class that is ever
written; every class must have a constructor and it is hard to imagine a useful
class that did not allow any form of access to its private data. Each of the classes
in the previous two chapters had these methods, and if you worked through the
implementations of the classes in the exercises and examples you will have seen
and written some of each. There is nothing new here.

There are, of course, other methods in any class. These tend to be more
specialised than selectors and mutators and can only rarely be used in different
classes. What is important here is that selectors and mutators allow for data
hiding, a mechanism that keeps the developer of a class in control of the
accuracy and integrity of the values in the class’s attributes.

Data hiding
The key idea in the chapter is data hiding. This is also one of the key concepts
in object-oriented programming, and is another reason why object-oriented
programming is so popular.

The idea is quite simple. A programmer using a class needs to have no knowl-
edge of how that class is actually implemented, of how the private attributes are
actually stored. In Java terms this means that a programmer needs to only know
the public interface to the class and has no need to know anything at all about
the private parts. We have seen that it is possible to write a program that uses a
class by examining only its methods; there is no need to worry about what
attributes are stored.

So a programmer developing a class can specify exactly how that class can be
used. If the class is written and tested well it should not be possible to use it in
a way that would produce incorrect results. Testing is also made easier because
the interface is probably quite small; it is much easier to thoroughly test a small
well-defined interface than it is to test a large unstructured program.

There is another potential benefit. If a programmer using a class needs to
know nothing of the way in which the class itself is stored then this storage can
be changed if needed. It can be changed and programs using the class will still
work and will be totally unaware of the change as long as the methods making
up the public interface continue to behave as before.

Data hiding is achieved in Java with selectors and mutators. These control
access to the private part of the class and mean that the attributes in these
private parts can be changed without the change causing any problems to
programs using the class. Let’s look at each in turn.

Selectors
Since it is part of a class, a selector can access the private parts of the class. A
selector’s job is to provide the value of a given attribute to the program that

Get your hands off my data! 169

calls the method. The format of the declaration in the .java file follows a
predictable format:

public �return type� �method name� ()

Selectors must be defined in the public part of the class, or they would be of
very little use! They do not have parameters so there is also an empty set of
brackets. The return type, which is the type of the attribute that is being
returned, is added to the start of the line. A common convention, and one that
is used in all the programs here, is that the name of the selector method is made
up of the word get followed by the identifier of the attribute that is returned.

For example, in a simple Duck class, the getName method would return the
name of the duck, a string:

public String getName ()

The implementation of a selector is usually only one line. The value required is
just returned. So in this example:

public String getName ()
{
return name;

}

A similar example could be used to provide the value of a duck:

public double getValue ()
{
return value;

}

In both these examples, the selector is returning a value that is presumably
stored explicitly in an attribute. But selectors do not necessarily have to return
a value that is actually stored in the private part of the class. It can sometimes
be useful and very powerful to implement selectors that do not do this; selec-
tors can return a value that is derived from one or more of the other values in
the class. You might remember that we suspected that some of the getValue
methods that we have met before were doing just this when the value was
based on a complex formula.

Suppose that a user of a Duck class often wanted to use the values of the duck
after some tax (calculated as some known percentage of the actual value) had
been added. One approach to this would be to add a new private attribute to
store the price plus tax and to allow access to it via a suitable pair of a selector
and mutator. There is a drawback with this; the value and the value after tax are
the same information stored in different ways and so the mutator that changed
one would have to change the other. If the value were reduced then the value
after tax would have to be reduced too. This is a needlessly complex solution
and one that would be best avoided.

Far better would be to simply create a new selector to return the value after
tax. This can be added to the header file:

public double getValuePlusTax ()

and, assuming that the rate of tax is stored in the final variable TAX_RATE, it
can be implemented:

public double getValuePlusTax ()

170 How to program using Java

{
return value * (1.0 + TAX_RATE);

}

A programmer using the class does not need to know whether the value with
tax is stored as a private member or not (as we did not when we encountered
the complex formulas). As before, the programmer just has to understand and
use the public interface to the class.

This solution also makes the job of writing the mutators more straightfor-
ward, so let’s have a look at how these work.

Mutators
Mutators change values of attributes and are very similar to selectors. The main
difference is that they each have the new value for the private attribute
provided as a parameter. This parameter is listed together with its type (and is
given an identifier) in the brackets after the method’s name. The heading line is
then complete:

public void setName (String newName)

It is useful to use a similar convention for naming mutators to that used for
selectors. Here we will use set followed by the name of the attribute that is
affected, so setName changes the value of the name attribute.

The declaration of the parameter in the brackets looks rather like the
declaration of a variable and this is in fact just what it is. The parameter is avail-
able inside the method in just the same way as a variable. Again, a convention
for naming the parameter is a good thing; here we use the word new followed
again by the name of the attribute.

The body of the mutator method takes the value of the parameter and assigns
it to the private attribute. Finally, the method has no particular need to return a
value, so it is declared as void. The full method is now:

public void setName (String newName)
{
name = newName;

}

This is a very simple example, and one that sets the new value without bother-
ing to check it; the assumption is that the string provided is a valid name for a
duck. But suppose that a similar method had been written to set a duck’s age:

public void setAge (int newAge)
{
age = newAge;

}

This is fine, and it would work. The problem would come when a program tried
to use it with an invalid value; this method would quite cheerfully set the age
of a duck to 400 (which is unlikely) or –1 (which is clearly invalid). A slightly
more sophisticated mechanism is needed.

The solution is to check the value before it is used, and to set it only if it is
found to be valid. That needs some Java that we’ve not seen yet, so we’ll see
how to do that in the next chapter.

Get your hands off my data! 171

Basic methods
Selectors and mutators, together with the constructor, are the most fundamen-
tal methods to be implemented for any class. It’s time for some more practice.

172 How to program using Java

Example 1 – More from Bruce’s library
Bruce’s first efforts to produce a program to store details of the borrowers from his
library produced this .java file:

public class Borrower {
private String name; // Name of borrower
private int number; // Unique borrower number

public Borrower ()

{

}

public void print ()
{
System.out.println ("Borrower: " + name);
System.out.println ("Number: " + number);

}
}

He now wants to extend this class to include suitable selectors and mutators. What
should the complete implementation be?

The class definition needs two selectors and two mutators, one of each for each
of the private attributes. This also seems to be a good time to add some
comments into the file.

/* Borrower.java – A class to store borrower details for
Bruce’s library.

Author : AMJ
Date : 6th February 2003
Tested On: Red Hat 7.3, JDK 1.4.0

*/

public class Borrower
{
private String name; // Name of borrower
private int number; // Unique borrower number

// Constructor

public Borrower ()
{
}

// Print out details neatly formatted
public void print ()
{
System.out.println ("Borrower: " + name);
System.out.println ("Number: " + number);

}

// Selectors

public String getName ()
{
return name;

}

public int getNumber ()
{
return number;

}

// Mutators

public void setName (String newName)
{
name = newName;

}

public void setNumber (int newNumber)
{
number = newNumber;

}
}

There seems to be no particular need for the constructor to set any default val-
ues and the selectors and mutators follow the usual patterns from this chapter.
Simple.

Example 2 – More wandering ducks
The whereabouts of his ducks on his pond continues to be of great concern to
Mr Martinmere. He has a program that uses a class, but the recent failure of his hard
disk combined with his poor backup strategies means that he is forced to rewrite it!

Happily, he has found a very early printout of the class. This contains the headers for
all the methods but is missing the implementations. Clearly they must be added back in.
This is the file he has:

public class Duck {
private String name;
private int x, y;

public Duck (String n) // All ducks start at 0,0

// Selectors
public String getName ()
public int getX ()
public int getY ()

// Mutators
public void setName (String n)

Get your hands off my data! 173

public void setX (int newX)
public void setY (int newY)

// Other Methods

// Move duck to newX, newY
public void moveTo (int newX, int newY)

}

What does the full implementation look like?
Taking each method in turn, the first is the constructor. The comment in the file
requires that each duck is given the initial position (0, 0). The name of the duck,
we can assume from the constructor’s parameter list, is obtained before the
object is created, then passed as the only argument to the constructor. Thus the
constructor is simply:

public Duck (String n)
{
x = 0;
y = 0;
name = n;

}

The selectors and mutators all follow what is by now a very familiar pattern.
An example of each:

public int getX ()
{
return x;

}

public void setName (String n)
{
name = n;

}

The final method is slightly more interesting:

// Move duck to newX, newY
public void moveTo (int newX, int newY)

This method moves a duck to a new position so it is effectively nothing more
than a mutator that operates on two private attributes at the same time. We
actually saw it in the previous chapter, but it’s worth looking at again here. It is
implemented:

public void moveTo (int newX, int newY)
{
x = newX;
y = newY;

}

A side issue here is that this implementation of the class would work with
any existing programs that used the implementation that Mr Martinmere has
lost as a result of his unfortunate accident. The public interface hasn’t been
changed, and it doesn’t matter whether the implementation is identical to the
lost one just as long as it works correctly.

174 How to program using Java

Get your hands off my data! 175

13.1 A class written to process the details of coots has the following definition:

public class Coot
{
private String name;
private int age;
private double value; // in UK Pounds

public Coot () // sets no default values

public String getName ()
public int getAge ()
public double getValue ()

public void setName (String)
public void setAge (int)
public void setValue (double)

}

Fill in the implementations.

13.2 Now write a short program that will allow you to test the class. The pro-
gram should prompt a user to enter some values for the attributes of an instance
of the class and should then use and test all of the methods in turn. We have
seen programs such as this before; they are called driver programs, and such
programs are often written to test a class. The main method would be a good
place to put it.

13.3 A program that has been developed to test this class contains the follow-
ing lines of code. What error has been made? How should the error be cor-
rected?
Coot zoot;
zoot.setName ("Zoot");

System.out.println ("Name has been sent to " + zoot.name);

13.4 There is no error in this skeleton of a class definition but there is some
poor design. Explain the poor design and write a corrected skeleton file.

public class Coot
{
private String name;
private int age;
private double value;
private double valuePlusTax; // value plus 15%

public Coot ()

{
}

public String getName ()
{
return name;

}

public int getAge ()
{
return age;

}

public double getValue ()
{
return value;

}

public double getValuePlusTax ()
{
return valuePlusTax;

}

public void setName (String newName)
{
name = newName;

}

public void setAge (int newAge)
{
age = newAge;

}

public void setValue (double newValue)
{
value = newValue;

}

public void setValuePlusTax (double newValuePlusTax)
{
valuePlusTax = newValuePlusTax;

}
}

13.5 In the examples you have seen so far there have been mutators and selec-
tors for each and every private attribute. Is this always sensible? Do you think
that mutators and selectors should be added to the design of every class?

176 How to program using Java

Get your hands off my data! 177

You have now seen and used all aspects of creating a Java class. You should be
able to define a class and then develop a suitable implementation, including
selectors and mutators. Finally you should also be able to write programs that
make use of your class.

You should understand the concept of data hiding. You should know why it
is important that access to the private attributes of a class is controlled and why
such access should be allowed only through the class’s public interface. This
interface is implemented in Java with selectors and mutators; these are simple
methods that either return or change the value of a private attribute.

Although you have seen only simple examples of methods so far the details
you have seen and practised remain the same as methods become more com-
plicated. You have in fact seen all the Java that is used to define, implement, and
use very simple classes.

The remainder of this book will show you Java that will allow you to write
more and more complicated and useful programs.

178

Making things happen. Sometimes 179

Up to this point the behaviour of your programs has been very predictable. The
programs have been simply a sequence of statements that is executed in a strict
order from the top of the program to the bottom. While you have been able to
accept input values from your users all you have been able to do is use these
values in calculations. You have not been able to use them as the basis of deci-
sions. More complex programs take values from the user and will behave dif-
ferently depending on the values that are entered. This chapter is about writing
programs that do just that; they take values, test conditions, and then behave
differently depending on the results.

After reading this chapter you should understand how to include conditional
statements in your programs. You should understand the concept of a Boolean
value more fully and you should be able to use Boolean variables and expres-
sions in your programs. You should be able to combine these values using
Boolean operators and you should be able to use these values and operators in
conditional statements. You should understand and be able to use the Java if
and switch statements.

A condition is a statement that is either true or false. Programs need to be able to
test conditions so that they can behave differently in different situations. This is
achieved with conditional statements; these are statements that test a condition
and then choose between two (or more, in fact) different possible behaviours
depending on whether the condition was found to be true or false. Conditional
statements can be combined to allow programs to make a choice between more
than two possible behaviours.

There are a couple of types of conditional statements in Java (and many other
languages, for that matter). The most common is the if statement; there is also
the switch statement that provides a shorthand form for a particular type of
if statement. It is possible to write all switch statements as if statements,

but the switch statement can be more elegant and neater. Before using either
of these statements, however, you need to understand the concepts of true and
false and how these can be stored and expressed in Boolean variables.

True and false
Some statements are always either true or false. Here are some examples:

Statements that are True
● Elvis is a duck.
● Potatoes grow in the ground.
● Christmas Day is the 25th of December.
● Ducks live in ponds and eat molluscs.

Statements that are False
● Elvis is a gibbon.
● Potatoes grow on trees.
● Christmas Day is the 14th of June.
● Ducks live underground and eat curry.

All of the statements are either true or otherwise they are false. They must
be one or the other. Their “true-ness” will never change no matter what
happens.

Some statements are more complicated. Some statements are true some of the
time and false at other times. They are always one or the other and never, of
course, both. Here are some examples:

● Elvis is swimming around on his pond.
● I have some potatoes in my kitchen.
● It is Christmas Day tomorrow.
● There are six ducks on the pond and they are all easting molluscs.

At any point in time these statements will either be true or false. Their “true-
ness” depends on some condition:

● Elvis might be swimming around on his pond, or he might not be.
● I may have some potatoes in my kitchen, or I may have run out.
● It may be Christmas Day tomorrow, or it might be the middle of June.
● There may be six ducks on the pond but some more may arrive, or some may

go away. The ducks that are there may be eating molluscs, or some or all of
them may stop. There are actually two conditions here – the number of ducks
on the pond and whether or not they are eating molluscs.

In order to determine the “true-ness” of the statement it is necessary in each
case to test this condition. This test could be expressed in pseudocode, for
example:

IF IT IS DECEMBER 24TH TODAY THEN
IT IS CHRISTMAS DAY TOMORROW

OTHERWISE

180 How to program using Java

IT IS NOT CHRISTMAS DAY TOMORROW
END IF

Or perhaps:

IF IT IS DECEMBER 24TH TODAY THEN
IT IS TRUE THAT IT IS CHRISTMAS DAY TOMORROW

OTHERWISE
IT IS FALSE THAT IT IS CHRISTMAS DAY TOMORROW

END IF

Or in more general terms:

IF THE CONDITION IS TRUE THEN
THE STATEMENT IS TRUE

OTHERWISE
THE STATEMENT IS FALSE

END IF

This is totally unambiguous; the condition is either true or it is false and so,
therefore, is the statement. Neither can ever be both true and false and neither
can ever have some other value.

Boolean variables and operators
In Java, Boolean variables are variables that can store one of two values, true
or false. The data type is boolean and they are declared in the same way as
all other variables:

boolean finished;

Boolean variables can only be assigned one of the two possible values:

finished = true;
finished = false;

On their own Boolean variables are of very limited use, which is why we
have not made any use of them so far. It is not possible to read values for them
from the user’s keyboard and it is not possible to output their values directly.
Their power comes when they are used in Boolean expressions.

Variables of the more familiar numeric types have a number of operators
that can be used with them. You have seen (and hopefully written) many pro-
grams where integers and floating-point values have been added together,
subtracted, multiplied, or divided. Boolean values also have a set of operators;
their meaning is similar to the operators for the numeric types, but the mean-
ing is now set in terms of logical operations. These operators allow Boolean
variables and values to be combined in various ways based on the principles
of mathematical logic. You may well have met them before in a mathematics
course.1

There are three basic Boolean operators:

Making things happen. Sometimes 181

1 You might also have met them in a computer hardware or electronics course. Combining
Boolean operations is effectively the same as combining currents with “gates” in a circuit.

182 How to program using Java

First Second First or Second

false false false

false true true

true false true

true true true

Original not Original

false true

true false

and &&
or ||
not !

or
The “or” operator combines two Boolean values to give the result true if and
only if either (or indeed both) of the two values is true:

not
The “not” operator takes just one Boolean value and inverts it. It gives the result
true if the original value is false and vice versa:

The symbol used in the “or” is the “pipe” symbol, which you may not have met
before. This is normally found on the UK keyboard to the left of the z key or
else just above the TAB. It may well be shown on your keyboard as two vertical
lines with a gap between them.

The symbol for “not” is the exclamation mark. For reasons that are not espe-
cially clear in computing circles it is normally pronounced “bang”.

The two operators that take two values (“and” and “or”) are used in much
the same way as the similar mathematical operators for the numeric data types.
The “not” operator is simply added before the identifier of the variable:

boolean conditionOne = true;
boolean conditionTwo = false;

and
The “and” operator combines two Boolean values to give the result true if and
only if the two values are both true. Boolean expressions are often written out
in truth tables – here is the truth table for the “and” operator.

First Second First and Second

false false false

false true false

true false false

true true true

These three operators have the following symbols in Java:

// (conditionOne && conditionTwo) is false
// (condition One || conditionTwo) is true
// !conditionOne is false, !conditionTwo is true

Boolean values expressed in this way are the key to using conditional
statements.

Comparison operators
The key to using conditional statements is that they give the ability to compare
two values. A given value must be compared to some expected value to build
an expression which can then be used to determine whether a condition is true
or false. This comparison requires some operators.

The following operators are available in Java. The symbols and meanings
of most of them are much the same as you are probably familiar with from
mathematics.

Making things happen. Sometimes 183

== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

A common error is to confuse the “equal to” comparison operator �� with
the assignment operator �. You have been warned! Remember that a good way
of remembering the difference is to get into the habit of reading the assignment
operator as “becomes” or “is assigned” rather than the potentially misleading
“equals”. For the same reason you might want to read the comparison operator
as “is the same as”.

The meaning of each of these operators should be fairly obvious, but they are
illustrated in this sample code:

int first, second;

first = 10; // first is assigned 10
second = 20; // second is assigned 20

// first == 10 this is true, first equals 10
// first == second this is false, first does not equal second
// second != 10 this is true, second does not equal 10
// first > 0 this is true, first is greater than 0
// second < 0 this is false, second is not less than 0
// second < 20 this is also false, second is not less

than 20
// second <= 20 but this is true, second is equal to 20
// first >= 10 this is true, first is equal to 10

Each one of these comparisons is itself actually a Boolean value (or, more cor-
rectly, a Boolean expression); each one is either true or false. This means that it
is possible to assign such a comparison to a Boolean variable. For example:

int first = 10;
boolean firstIsTen;

firstIsTen = (first == 10); // assigns true

The brackets in this assignment are not essential but they do make the line a lot
clearer. Some more examples:

int aNumber = 10;
boolean condition;

condition = (aNumber > 0); // assigns true
condition = (aNumber <= 100); // assigns true
condition = (aNumber != 10); // assigns false
condition = (aNumber == 0); // assigns false

Conditions, comparisons, and Boolean variables are only really useful if
they can be used in conditional statements. So it’s time to look at the first of
these.

The if statement
In its simplest form the if statement evaluates a condition and executes the
statements following it only if the condition is found to be true. An if state-
ment starts with the word if which is then followed with the condition in
brackets:

if (�condition�)

The statements affected by the if statement are below, enclosed in the custom-
ary braces:

if (�condition�) {
// statements executed only if condition is true

}

If there is only a single statement inside the braces then they can be omitted,
but it is always good practice to include them to make sure that things are clear
and to avoid the possibility of an error if more statements are added in the
future. The statements inside the braces should also always be indented to
clearly show that the conditional statement controls them.

For example, if a program were required to divide two numbers it is impor-
tant to check that the divisor is not equal to 0 since dividing by 0 gives an error
(an error that we have already seen in Chapter 102). This can be achieved sim-
ply enough with an if statement:

double top, bottom;

System.out.print ("Enter the first number: ");
top = Console.readInt ();
System.out.print("Enter the second number: ");
bottom = Console.readInt ();

if (bottom != 0) {
System.out.print(top + " divided by " + bottom + " is ");
System.out.println(top / bottom);

}

184 How to program using Java

2 Where I promised that here in Chapter 14 we would see how to avoid this error. And
here we are!

This makes sure that the calculation takes place only if it is safe to do so.
The statements inside the braces are executed only if the condition:
bottom != 0

is true, so they are executed only if the divisor does not equal 0.
Of course if the divisor was 0 it would be useful to print a message to the user

telling them why no output has been produced; as matters stand the user
would just be left with no response at all from the program, a very bad exam-
ple of human–computer interaction. This can be done using the optional else
clause of an if statement.

The else clause of the if statement
The else clause of the if statement specifies the statements that will be
executed if the condition is found to be false. These statements are enclosed as
usual by curly brackets and are also indented:

if (�condition�) {
// statements executed if condition is true

}
else {

// statements executed if condition is false
}

A more complete statement to check that a division by 0 does not happen
would be:

if (bottom != 0) {
System.out.print(top + " divided by " + bottom + " is ");
System.out.println(top / bottom);

}
else {

System.out.println("Error! Cannot Divide by 0!");
}

Since there is a choice involved here, this could also (and equally well) be
written:

if (bottom == 0) {
System.out.println("Error! Cannot Divide by 0!");

}
else {

System.out.print(top + " divided by " + bottom + " is ");
System.out.println(top / bottom);

}

The difference in the second example is that the condition that is tested has been
“reversed”. There is no functional difference between these two examples.

The condition in the brackets of an if statement will often combine two
connected tests. Suppose that a program requires that the user enter a value
between a certain range such as 0 and 20; the program must test the value and
reject it if it is less than 0 or if it is greater than 20.

The description of the problem shows that this will be an application for the
Boolean “or” operator. Assuming that the range is inclusive the code is:

int aNumber;

Making things happen. Sometimes 185

System.out.print("Enter a number between 0 and 20: ");
aNumber = Console.readInt ();

if (aNumber < 0 || aNumber > 20) {
System.out.println("Error: Invalid Value!");

}
else {

// Process valid value
}

A common error is to write a statement such as this in this way:

if (aNumber < 0 || > 20) // THIS IS AN ERROR!!

While this may make sense, especially when read aloud, it is always an error.
The reason should be obvious. The value to the right of the “or” operator is
“� 20”; this is not a properly formed Boolean condition since there is nothing
for the 20 to be compared to. It should be obvious that this is an error:

if (> 20) // THIS IS ALSO AN ERROR!!

and this is the exact condition that is on the right-hand side of the “or” opera-
tor in this example.

While validating this input, much the same effect could be achieved by
accepting only those values that are greater than or equal to 0 and less than or
equal to 20. Once again the description contains the name of the required
Boolean operator, in this case “and”:

if (aNumber >= 0 && aNumber <= 20) {
// Process valid value

}
else {

System.out.println("Error: Invalid Value!");
}

This example is exactly equivalent to this:

if (aNumber > -1 && aNumber < 21) {
// Process valid value

}
else {

System.out.println("Error: Invalid Value!");
}

The choice of which of these possibilities to use is largely a matter of the
programmer’s taste and personal programming style. With experience, in most
cases one possibility will feel more natural but this does not mean that any of
the others are ever in any sense wrong.

More complex if statements
Sometimes the choice to be made is more complex. There may be three possible
values for some variable and three possible paths for the program to fol-
low. There may be many more. The if statement is easily extended to deal
with this:

if (�condition1�) {
// statements if condition1 is true

}

186 How to program using Java

else if (�condition2�){
// statements if condition1 is false but condition2 is true

}
else {

// statements if condition1 and condition2 are both false
}

Only one of the three possibilities is ever executed. If the first condition is true
the first set of statements is used. The second condition is only tested if the first
condition is found to be false; the statements that it controls are executed only
if the second condition is found to be true. Finally, if both conditions are false,
the final set of statements will be used. One of the three sets of statements is
therefore always executed.

As an example of using a more complex if statement, consider the problem
of printing a date. Suppose the date is stored as three integers, one each for the
day, the month, and the year and that the required format prints the day part as
“1st”, “2nd”, “3rd”, and so on. The code to generate the required two letters to
follow the number would be a single long if statement. Assuming that the day
is held in the integer variable day, one possibility to output the day part of a
date would be:

System.out.print(day);

if (day == 1 || day == 21 || day == 31) {
System.out.println ("st");

}
else if (day == 2 || day == 22) {

System.out.println ("nd");
}
else if (day == 3 || day == 23) {

System.out.println ("rd");
}
else {

System.out.println ("th");
}

There can be any number of conditions tested in this way. There does not need
to be a final else section and there need not be if the tests beforehand cover
every relevant possibility. If there is no else section it is then possible that none
of the possibilities will ever be executed.

This form of the if statement is so common that there is a different condi-
tional statement available; the switch statement provides a neat mechanism
for particular types of comparisons. That said, the switch statement does
nothing that cannot be expressed with a suitable if statement.

The switch statement
The switch statement provides no control that an if statement does not; it
simply allows for neater code. It is used in the particular case where there is a
set of possible values for some variable (called the control variable) and different
actions must be taken for each one. The format is:

switch (�control variable�) {
case �value 1�: // actions if variable is value 1

break;

Making things happen. Sometimes 187

case �value 2�: // actions if variable is value 2
break;

default: // actions if variable had none of the values listed
}

Since it must be possible to list all the possible values of the control variable, if
follows that the variable must be a char, an int or one of the other integer
types (long and short, neither of which we will meet in this text).3 It is not
possible to list all possible strings, or all possible floating-point numbers. The
effect of the statement is that the case containing the value is found, and the
statements found there are executed. The end of the case is marked with break,
and execution stops.

A switch statement would be suitable for printing the name of the month
from a numeric representation of a date. There would be twelve possibilities,
one for each month. Assuming that the month is stored in an integer variable
called month the code would be:

switch (month) {
case 1: System.out.print ("January");

break;
case 2: System.out.print ("February");

break;
case 3: System.out.print ("March");

break;
case 4: System.out.print ("April");

break;
// and so on for the other months

}

There would be no need for a default section in this case because all the pos-
sible values would presumably be known and listed. If it were possible that an
invalid value could be held in month there are two possibilities. One is to add
a default section:

default: System.out.println ("Error: Invalid Month!");

A potentially neater alternative is to keep the switch statement as it stands
and to use it only if the value is found to be valid:

if (month >= 1 && month <= 12) {
switch (month) {

// switch cases
}

}

An error message can be added to this example too:

if (month >= 1 && month <= 12) {
switch (month) {

// switch cases

188 How to program using Java

3 Formally, these are called ordinal types since their values can be listed and ordered.
Booleans are ordinal too, but since there are only two possible values there is little point in
using a boolean in a switch statement.

}
}
else
{

System.out.println("Error: Invalid Month!");
}

Only variables whose possible values can be listed can be used in switch
statements; this effectively means only integers and characters. The default
case means that it is not necessary to list all the possible values, of course.

As a further example here is a switch statement that would expand the
names of the points of the compass held in the char variable point:

switch (point) {
case 'N': System.out.print ("North");

break;
case 'S': System.out.print ("South");

break;
case 'E': System.out.print ("East");

break;
case 'W': System.out.print ("West");

break;
}

Sometimes the same statement is required for more than one value. If in this
compass example the character could be in upper or lower case then the same
statement should be executed for ‘n’ as for ‘N’, and so on. It would be wasteful
to duplicate the code, so more than one value can be attached to a case:

switch (point) {
case 'N':
case 'n': System.out.print ("North");

break;
case 'S':
case 's': System.out.print ("South");

break;
case 'E':
case 'e': System.out.print ("East");

break;
case 'W':
case 'w': System.out.print ("West");

break;
}

If a switch statement like this is used, it is important to make sure that the
break lines are used correctly to separate the various cases. It is also clear
why omitting a break in a simpler switch statement can produce all sorts of
unexpected results.

The neatness of the switch statement is apparent from the if statement that
is equivalent to this last example:

if (point == 'N' || point == 'n') {
System.out.print ("North");

}
else if (point == 'S' || point == 's') {

System.out.print ("South");
}
else if (point == 'E' || point == 'e') {

Making things happen. Sometimes 189

System.out.print ("East");
}
else if (point == 'W' || point == 'w') {

System.out.print ("West");
}

At the same time the switch statement does nothing that an if cannot. Once
again the choice of whether or not to use a switch statement is often just a
matter of taste or preferred programming style.

Ending a program
Conditional statements will allow you to check that the values supplied by the
users of your programs are expected. This raises the question of what to do if
the values are unexpected; often the error will be fatal and there will be little
point in carrying on asking for the rest of the values and making calculations.4

If a program requires a single value it is simple to just exit the program if an
invalid value is provided – this is precisely what the example to trap a poten-
tial division by 0 did. When more than one value is required it is possible to
use the same technique to achieve this effect with a sequence of conditional
statements:

// get value 1
if (�value 1 is not valid�) {

// display an error
}
else {

// get value 2
if (�value 2 is not valid�) {

// display an error
}
else {
// process the values
.
.
.
}

}

This will work but will quickly become very cumbersome and unwieldy, as
more and more conditional statements have to be added for more values.
Imagine what it would look like if there were 10 input values, or 100! The
indentation would mean that the code would quickly disappear off the right of
the page!

An alternative is to use a quick and immediate way to end a program. The
System.exit command provides just that:

System.exit (0);

190 How to program using Java

4 We will soon see a more elegant solution to this problem where we will be able to keep
asking a user for values until they enter something correct. But for the moment something
rather more brutal is required.

This terminates the program immediately without processing any more state-
ments. The parameter in the brackets can be used to indicate why the program
has exited abruptly; this value can sometimes be trapped by the system that
called the program.

The code for dealing with invalid input values is now much simpler:

// get value 1
if (�value 1 is not valid�) {

System.out.println (“Error: Value 1 not valid”);
System.exit (0);

}

// get value 2
if (�value 2 is not valid�) {

System.out.println (“Error: Value 2 not valid”) ;
System.exit (0) ;

}

and so on. We will see how to use this technique in some of the examples.

A warning about comparing strings
Testing strings for equality in Java has a nasty habit of causing headaches. It
may be tempting to compare them as you would compare other data types such
as int, char or boolean, but would not normally give the correct results.
String is a built-in class provided with your Java packages; this is not the

same thing as the other basic types (and is the reason why String starts with
a capital letter). It is tempting to try to use strings in the same way as other
types, and this will work some of the time. But using them in comparisons can
lead to misleading results. Look at this code:

String s1 = "Elvis", s2 = "Elvis";
if (s1 == s2) {

System.out.println ("s1 and s2 are equal");
}
else {

System.out.println ("s1 and s2 are different");
}

The output from this, rather surprisingly, is:

s1 and s2 are different

The reason for this is subtle. In the case of the basic data types (int, double,
boolean), the virtual machine knows to compare their values with
the �� operator. With classes, however, the �� operator is used to compare
the memory locations (or references) that the two operands refer to, and
returns true if the two references are identical. Identical here means that they
occupy the same part of the computer’s memory. You might remember that we
noticed a similar problem with using the assignment operator with objects.

So in the case of two String objects, �� does not compare their values,
but effectively checks whether the variables refer to the same instance of the
String class. Since s1 and s2 are different instances, the program behaves as

Making things happen. Sometimes 191

above. This is known as comparing references, and will be examined again in
Chapter 17.

Now, you may be wondering how it is possible to compare the values of two
String objects. Happily the String class has been designed with this in mind,
and provides a special method, equals, to compare two String objects.5 It is
used as follows:

String s1 = "Elvis", s2 = "Elvis";
if (s1.equals (s2)) {

System.out.println ("s1 and s2 are identical");
}
else {

System.out.println ("s1 and s2 are different");
}

This time the output is as expected:

s1 and s2 are identical

There are several other useful methods included in the String class; the Java
API lists them all, of course. One similar in use to the equals methods we have
already met, is the equalsIgnoreCase method, which as the name suggests,
compares two strings case-insensitively:

String s1 = "buddy", s2 = "Buddy";
if (s1.equalsIgnoreCase (s2)) {

System.out.println ("s1 and s2 match, ignoring case");
}
else {

System.out.println ("s1 and s2 do not match");
}

It is worth spending a bit of time experimenting with simple programs that use
strings to get used to how all this works. The API is a fine place to start.

Conditional statements and conditions
Conditional statements allow a great deal of control over the way in which
programs handle the values supplied by users. It is now possible to identify
and handle cases of values that would previously have caused serious errors.
These errors can now be dealt with neatly useful messages being displayed
to the user.

With conditional statements it is now possible to write programs that
examine the values provided by users and work in different ways determined
by these values.

It’s time to practise doing this with the examples and exercises.

192 How to program using Java

5 The equals method is like the toString method in that it is provided by default to all
classes. The default action of this method is identical to �� , but the programmer can
define a different action if necessary, as the default behaviour is not always intuitive or
sensible.

Making things happen. Sometimes 193

The conditional statements described in the chapter can be used to make some
of the programs from previous chapters and examples much more robust. They
can be made to handle unexpected input values and to provide useful feedback
to their users if errors are made.

Example 1 – Cilla’s cricket poser revisited
Cilla’s cricket poser from Chapter 8 is a fine example of a program where there is a
potential divide by 0 error. You might remember that Cilla is in charge of dividing the
ducks up into their cricket teams; obviously there is a potential error if she tries to divide
some number of ducks up into teams consisting of 0 ducks.

Cilla’s program currently looks like this:

/* CricketScheduler.java – Cilla’s cricket scheduling
software

Author : GPH
Date : 9th June 2003
Tested on : Linux (Red Hat 8.0), JDK 1.4.1

*/

public class CricketScheduler
{

public CricketScheduler () {}

public int getNumTeams (int num, int size)
{

return num / size;
}

public int getRemainder (int num, int size)
{

return num % size;
}

public void printInfo (int num, int size)
{

System.out.println ("There are " + num
+ " ducks available.");

System.out.println ("This means "
+ getNumTeams(num, size)
+ " teams of " + size + ".");

System.out.println ("This leaves "

+ getRemainder(num, size)
+ " substitutes.");

}

public static void main (String args[])
{

CricketScheduler cs = new CricketScheduler ();
int numDucks = 36;
final int TEAMSIZE = 11;

cs.printInfo (numDucks, TEAMSIZE);
}

}

Where is the potential error and what can Cilla do about it?

The error is fairly obviously in the method that does the division:

public int getNumTeams (int num, int size)

{

return num / size;

}

This method (which is intentionally using integer division) will encounter an
error if the parameter size is 0. This is not an especially likely error at the
moment, especially as the size of the teams is currently defined as final and
so cannot change. Nevertheless the method (or the whole class) might at some
point be used in another program, so the possible error should be trapped and
dealt with.

The check is a simple conditional statement:

if (size == 0) {
// size is invalid

}

But the question now arises of what to return if the error is detected. The
method has to return an integer, so presumably some integer value that indi-
cates an error is required. For this example, we’ll just make the method
return �1, a value that is clearly nonsense. And just to be thorough we’ll also
make sure that any negative values of size (which are clearly also nonsense)
also result in an error.

The method now becomes:

public int getNumTeams (int num, int size)
{

if (size == 0 || size < 0) {
return -1;

}
else {

return num / size;
}

}

Or, and perhaps more neatly:

public int getNumTeams (int num, int size)
{

if (size > 0) {

194 How to program using Java

return num / size;
}
else {

return -1;
}

}

Or even:

public int getNumTeams (int num, int size)
{

if (size <= 0) {
return - 1;

}
else {

return num / size;
}

}

So this method is now avoiding the error and providing a value that indicates
that the error has been spotted. It remains to do something with this value.

The getNumTeams method is called by the method that prints out the final
information:

public void printInfo (int num, int size)
{

System.out.println ("There are " + num
+ " ducks available.");

System.out.println ("This means "
+ getNumTeams(num, size)
+ " teams of " + size + ".");

System.out.println ("This leaves "
+ getRemainder(num, size)
+ " substitutes.");

}

This method must now make use of the value returned by getNumTeams; it
must examine this value and only display results if it is not an error. In fact it is
only sensible to display results at all if the value is not an error so the program
might as well exit immediately if there is a problem with the data supplied:

public void printInfo (int num, int size)
{

if (getNumTeams (num, size) !=- 1) {
System.out.println ("There are " + num

+ " ducks available.");
System.out.println ("This means "

+ getNumTeams(num, size) + " teams of "
+ size + ".");

System.out.println ("This leaves "
+ getRemainder(num, size)
+ " substitutes.");

}
else {
System.exit (0);

}
}

Making things happen. Sometimes 195

A final touch is to make this final method display a message if the error case is
encountered. This is a simple change to the else clause:

public void printInfo (int num, int size)
{

if (getNumTeams (num, size) !=-1) {
System.out.println ("There are " + num

+ " ducks available.");
System.out.println ("This means "

+ getNumTeams(num, size)
+ " teams of " + size + ".");

System.out.println ("This leaves "
+ getRemainder(num, size)
+ " substitutes.");

}
else {
System.out.println ("Error! Size of Teams is Invalid!");

}
}

Example 2 – Bruce’s sign revisited
Bruce is very pleased with his new electronic sign. He particularly enjoys changing the
messages. He has taken to using the version of his program that uses a command line
argument to set the message, and this works well.

One day he experiences a problem when he forgets to provide the command line argu-
ment and all sorts of unexpected things happen.

How can his program be altered to detect this error?

Bruce’s sign program currently looks like this.

/* Sign3.java – Bruce’s sign, taking a command line argument
and displaying it as the message.

Author : GPH
Date : 29th June 2003

*/

public class Sign3
{

// Single Attribute – What to Display
private String message;

// Methods

public Sign3 ()
{

message = "";
}

public void setMessage (String newMessage)
{

message = newMessage;
}

public void display ()
{

System.out.println (message);
}

// Main Method
public static void main (String args[])

196 How to program using Java

{
// Create an object for the sign
Sign3 brucesSign = new Sign3 ();

// Set the Message...
brucesSign.setMessage (args[0]);

//...and display it.
brucesSign.display ();

}
}

The problem here is that the new message to be displayed (stored in args[0]) is
displayed whether or not a sensible value was provided. This is obviously some-
thing that can and should be tested for, but the question arises of what to test.

There are two obvious possibilities. Bruce could change his program to test
whether or not the message had any characters in it. This is possible, but would
only be appropriate if he never wanted to display an empty message. The alter-
native, probably better, approach is to find out how many command line argu-
ments were supplied, and to complain if the number was not as expected.

The command line arguments are stored in args, which is a collection of
strings. There will be more about collections of various sorts later on, but for the
moment you just need to know that there is the public attribute, length, that
returns the number of items in this particular type of collection. Bruce is expect-
ing one argument, so the expected number is predictably enough 1.

The change now is to alter the program so that the message is only set if one
command line argument has been provided. The simplest place to do this is in
the main method:

if (args.length != 1) {
// Create an object for the sign
Sign3 brucesSign = new Sign3 ();

// Set the Message...
brucesSign.setMessage (args[0]);

//...and display it.
brucesSign.display ();

}

This means that the object for the sign is created only if there is a sensible
message to display. And obviously the message is only set and displayed if the
sign is created.

At the moment, of course, Bruce would be none the wiser if the message was
missing. He might be somewhat alarmed by the lack of activity on his sign, so
the program should also provide an error message if a problem has occurred.
This is a situation where the else clause comes in handy:

if (args.length != 1) {
// Create an object for the sign
Sign3 brucesSign = new Sign3 ();

// Set the Message...
brucesSign.setMessage (args[0]);

//...and display it.
brucesSign.display ();

Making things happen. Sometimes 197

14.1 For each of the following conditions write down a value of the variable
for which the condition is true. Try to write down at least two values for which
the condition is false; is this always possible?

aNumber == 1
aNumber >= 3.5
aChar != 'A'
aNumber < 100
aString.equals("elvis")

14.2 Examine the following program fragment carefully.

int aNumber;
double aDouble = 0.0;
String aString = "ducks";

}
else {
System.out.println ("Error! No Argument Supplied!");

}

This should keep Bruce properly informed. An alternative strategy would be to
make use of Bruce’s other maintenance program for this sign – the version that
asked him to enter the message. It would be a simple matter to alter the pro-
gram again so that it asked for a message if none were supplied as an argument.

The new code once again goes in the main method:

String msg = "";

// Check the argument, and get a message if needed
if (args.length != 1) {

System.out.print("Enter message : ");
msg = Console.readString();

}
else {

msg = args[0];
}

// Create an object for the sign
Sign3 brucesSign = new Sign3 ();

// Set the Message...
brucesSign.setMessage (msg);

//...and display it.
brucesSign.display ();

198 How to program using Java

Making things happen. Sometimes 199

aNumber = 10;
aDouble += 3.0;

After these statements have been executed what is the value of the following
conditions?

aNumber == 2
aNumber <= 10
aString.equals("cilla")
aNumber == 10 && aDouble == 4.0
aNumber == 10 || aString.equals("cilla")
!(aNumber == 5)

14.3 Write a program that prompts the user to enter two floating-point
numbers and enters the result of the first divided by the second. Your program
should handle the special case where the second number is 0 and should dis-
play a suitable message informing the user that division by 0 is not possible.

14.4 Write a program that prompts the user to enter the current year and the
year in which they were born and displays the user’s age (or, more accurately,
the age that the user will be this year). The program should check that the cur-
rent year is greater than 2000 and that the user’s year of birth is earlier than the
current year. An informative error message distinguishing between the two
possible errors should be displayed if the user does not provide valid data.

14.5 A class to store dates has the attributes:

private int day, month, year;

A method is required that will print the date in the format of, for example:

14th June 1967
23rd March 1982
10th October 1066

The method is of the form :

void printFormatted()

Implement the class and the method. Write a short program that tests your
implementation. There is no need to check that the date supplied is valid, but
you are welcome to try.

14.6 A simple class has been written to store the position of a duck on a pond.
The attributes and methods are as follows:

public class Duck

{
// Attributes

private String name;
private int x, y;

// Constructor

public Duck()
{
}

// Selectors

public String getName()
{
}

public int getX()
{
}

public int getY()
{
}

// Mutators

public void setName(String newName)
{
}

public void setX(int newX)
{
}

public void setY(int newY)
{
}

public void moveTo(int newX, int newY)
{
}

// Methods to move duck
// Parameter is number of units

void moveNorth(int d)
{
}

void moveSouth(int d)
{
}

void moveWest(int d)
{
}

void moveEast(int d)
{
}

}

Implement this class and then use it in a simple program.
The program should prompt the user to enter the name and initial location of

a duck and should then create an instance of the class. Both the x and y values
in the initial location should be positive. Finally the user should be asked to
enter a direction as a single character (N, S, W, or E – remember to validate it)
and a number of units (which should also be positive). The program should end
by displaying the position to which the duck has been moved.

200 How to program using Java

Conditional statements allow programs to react and behave differently in
response to values provided by users. The key idea behind a conditional state-
ment is a condition, an assertion that can either be true or false. A condition is
always true or false, although which it is can change as a program is run.

The values true and false are Boolean and can be stored in variables with
the type boolean. Boolean values and conditions can be combined using the
basic Boolean operators, “and”, “or”, and “not”. Any number of conditions can
be combined using these operators.

Conditions often include comparison operators. The simplest operator is
“equals”, represented in Java as �� for basic data types. Strings use the
equals method for the same comparison. There is a range of other operators
for comparing with values that are less than or greater than some known value.

When an unexpected value is detected in its input a program can be made to
exit immediately using the System.exit command. If a program does end in
this way it is always good practice to display an informative message to tell the
user what has happened. A numeric value can also be passed to the computer
via the System.exit command.

Of course it would be better if the program told the user of the error and gave
them the chance to provide another value. A user is likely to get very frustrated
at having to continually re-run a program. To allow this sort of control,
statements must be executed over and over again; this leads neatly on to the
topic of program loops.

Making things happen. Sometimes 201

202

Making things happen. Again and again 203

Conditional statements control the order in which the other statements in
a program are executed. However, even with this level of control the fact
remains that the overall flow of the program is still from the top to the bottom;
there are usually several routes to the end of the program, but the flow is
always in the same prevailing direction. Once a statement has been executed it
can never be executed again. It is not possible to go backwards.

There is a second type of statement that can control the order of execution of
a Java program. Program loops allow statements to be executed a certain num-
ber of times, or while some Boolean condition is true, or until some Boolean
condition has become false. This chapter explains the different kinds of loops
that are available and describes how to use loops in your classes and programs.

After reading this chapter you should be able to write methods and programs
that include loops. You should understand the different kinds of loops available in
Java and you should be able to decide which to use to solve a particular problem.

Let’s illustrate this new idea with an example. The previous chapter explained
how to validate the values that users supply to your programs. This is effective
as far as it goes, but the dialogue that has resulted is hardly very friendly. The
end result is that the users are simply told that they have made an error and the
program then finishes; if the user wants to try again with another value (or set
of values) the program has to be executed again and all the values have to be
entered again. This would be especially annoying for a user who had entered
several values correctly only to make a small error with a later value.

In these situations it would be far preferable to have a more complex
dialogue where the user is still informed of the error but is then invited to
re-enter an acceptable value. This dialogue might resemble:

Enter a number between 1 and 10: 20
Error: Number out of range. Try again: 5
Thank you. The number you entered was 5.

204 How to program using Java

This is a much more friendly example of interaction than those that we have
been able to achieve up to now.

To implement a dialogue such as this, one or more statements in a program
must be executed a number of times. Since it is not possible to predict how
many times the user will make a mistake, or even if they will make one at all,
the statements concerned cannot be repeated in the program; rather the same
statements must be executed until the user provides an acceptable value.

This is only one example of where a program loop might be used. There are
many others situations where this is required, but there are in general only three
types of loop:

● Part of a program is executed a given number of times. Do this six times.
● Part of a program is executed until some condition becomes true. Do this until

the user has entered an acceptable value.
● Part of a program is executed while some condition is true. Do this while the

user continues to enter incorrect values.

In each of these examples “part of a program” means one or more statements
enclosed between the usual pair of braces.

The last two possibilities in this list may seem at first sight to be the same
thing, but they are not. There is a subtle difference. A loop that is executed until
some condition becomes true will always be executed at least once, while a
statement that is executed as long as some condition is true may never be
executed at all if the condition is initially false.

Some examples of loops are:

● Execute this statement seven times.
● Execute this statement, and carry on executing it until the user enters a

negative value at the prompt.
● Execute this statement while the user continues to provide valid input values.

These three types of loop are implemented in Java as for loops, do … while
loops and while loops, respectively. The names simply refer to the Java
keywords that are used to express such a loop.

for loops
A for loop causes statements to be executed a certain number of times.
This number might be a known literal value such as 10 or it might be held in a
variable. The first case is used when it is known that the loop will always be
executed the same number of times, while the second allows the number to
be determined as the program is running.

The loop is controlled by a statement of the form:

for (�initialisation statement�; �continuation condition�; �change statement�)

The initialisation statement is executed the first time the loop is executed and
the loop continues to execute as long as the continuation condition is true. Each
time the end of the loop is reached the change statement is also executed.

This might all seem a little complicated, so an example illustrates:

for (int i = 0; i < 10; i ++)

The initialisation statement is often a declaration. In this example, when the
loop is first executed, an integer variable i will be created and initialised to 0.
The loop will execute as long as i is less than 10 (the continuation condition)

Making things happen. Again and again 205

and at the end of each execution 1 is added to i (the change statement). The
practical result of this is that in this case the loop will execute 10 times as
i moves from 0 to 9 inclusive. It is usual to start loops that count in this way
with an initial value of 0.1

The statements controlled by the loop are enclosed in the usual curly
brackets:

for (�initialisation statement�; �continuation condition�; �change statement�) {
// statements

}

As usual the statements are indented to emphasise the fact that they are inside
the loop. Any Java statements may appear inside the loop, including condi-
tional statements and other loops.

The variable declared in the initialisation is called the loop’s control variable.
It can be of any data type but it is most usually an integer. It does not necessar-
ily have to be declared inside the first line of the loop, but it most usually is.

The control variable is often used inside the loop. For example, to print the
first 10 integers (starting at 0, of course) the loop would be:

for (int i = 0; i < 10; i ++) {
System.out.println (i);

}

A slightly more useful loop prints out the 12 times table:

for (int i = 1; i < 13; i ++) {
System.out.print (i);
System.out.print (" x 12 = ");
System.out.println (i * 12);

}

This loop generates a lot of output for a small amount of code. This is the power
of loops. This program might also remind you of Buddy’s “Times Table”
program from Chapter 9; we’ll look at how that program can be rewritten with
a loop later on.

While the control variable can be used in any statement inside the loop there
are two important rules:

1. The control variable should never be altered inside the loop. It should be
altered only when an execution of the statements inside the loop has ended.

2. If the control variable is declared in the header of the loop it cannot be used
once the loop has terminated.

If it is necessary to use the value of the control variable after the loop has
finished it can be declared before the loop:

int i;

for (i = 0; i < 10; i + +) {
System.out.println (i);

}
// i can be used here

1 Remember that computers start to count at 0, not 1!

206 How to program using Java

Otherwise, attempting to use the control variable after the loop has finished
will result in an error:

for (int i = 0; i < 10; i ++) {
System.out.println (i);

}

// using i here is an error

By far the most common use of a for loop is just to execute a set of state-
ments a given number of times; the easiest way of doing this is always to count
up to this number. This gives a loop of a general form that will cause statements
to be executed n times:

for (int i = 0; i < n; i ++) {

// statements executed n times
}

Other less common possibilities include printing out just even numbers:

for (int e = 0; e < 10; e += 2) {
System.out.println (e);

}

or counting backwards from a number:

for (int b = 10; b >= 0; b --) {
System.out.println (b);

}

You might want to type these loops into small programs to see what they do.
for loops are called determinate loops because the number of times that the

loop will be executed can always be predicted (hence determined) before
the loop begins. This does not mean that the number of times a certain loop
executes is always the same; the number is often controlled by, or based on, the
values of other variables in the program.

For example the loop to print the 12 times table:

for (int i = 1; i <= 12; i ++) {
System.out.print (i);
System.out.print(" x 12 = ");
System.out.println(i * 12);

}

might be more useful if the user could choose how many terms of the table
to see:

int terms;

/* get the number of terms – in reality this number
would also be validated with a conditional statement */

System.out.print ("Enter the number of terms: ");
terms = Console.readInt ();

// display the table

for (int i = 0; i < terms; i ++) {
System.out.print (i);
System.out.print (" x 12 = ");
System.out.println (i * 12);

}

Making things happen. Again and again 207

It is not possible to forecast how many times this loop will be executed before
the program is run, but the number will always be known immediately before
the loop starts.

The loop could easily be extended to allow the user to pick the first value in
addition to the number of terms:

int start;
int terms;

System.out.print ("Enter the first value: ");
start = Console.readInt ();
System.out.print ("Enter the number of terms: ");
terms = Console.readInt ();

/* these values should be validated here, and the
loop executed only if they are sensible! */

for (int i = start; i <= start + terms; i ++) {
System.out.print (i);
System.out.print (" * 12 = ");
System.out.println (i * 12);

}

Finally, some specialised users might require only alternate terms in the table:

for (int i = start; i <= start + terms; i += 2) {
System.out.print (i);
System.out.print (" * 12 = ");
System.out.println (i * 12);

}

for loops are used when the number of times that a loop will be executed
can be determined for certain before the loop is executed for the first time. If this
number cannot be determined then the alternative, an indeterminate loop, must
be used instead.

while loops
A while loop is indeterminate; this means that it causes statements to be
executed while some Boolean condition is true. The condition can be anything
that produces a Boolean value, much like the condition of an if statement.
A while loop is started with a line of the form:

(while (<condition>)

and the program statement or statements affected by the loop appear immedi-
ately below enclosed with the familiar braces:

(while (<condition>) {
// statements

}

The statements are of course indented to make it clear that they are inside the
loop. As with a for loop, any valid statements may appear inside the loop,
including other loops.

The statements will continue to be executed as long as the condition in the
loop is true. When the final statement in the sequence is reached control returns
to the first, and so on. This means that:

● the condition must at some point become false or the loop will never
terminate;

208 How to program using Java

● if the condition is not true the first time the loop is to be executed the
statements will never be executed at all;

● the programmer must be confident of the value of the condition every
time the loop is reached, including the first.

while loops are often used to make sure that the values entered by users are
as expected. If the user enters an invalid value a while loop can be used to pro-
vide an error message and repeat the prompt until an acceptable value is pro-
vided:

int aNumber;

System.out.print ("Enter a number between 1 and 10: ");
aNumber = Console.readInt ();

while (aNumber < 1 || aNumber > 10) {
System.out.println ("Error: Number out of range");
System.out.print ("Enter a number between 1 and 10: ");
aNumber = Console.readInt ();

}

The condition

aNumber < 1 || aNumber > 10

defines the state when the number entered is out of the required range and
therefore invalid. The loop is executed only if the first attempt to enter the
number is invalid and it will repeat until a valid number is entered:

Enter a number between 1 and 10: 15
Error: Number out of range
Enter a number between 1 and 10: 20
Error: Number out of range
Enter a number between 1 and 10: 7

This produces a much neater dialogue between the user and the program. If the
user makes a mistake they have the chance to correct the error immediately
rather than having to run the whole program again.

Care must be taken that the value of the condition changes at some point in
the loop. For example, this loop will never terminate:

int aNumber = 10;
while (aNumber >= 10) {
System.out.print("The number is " + aNumber);
aNumber ++ ;

}

Here the value of aNumber will keep increasing and the value of the Boolean
expression controlling the loop (that aNumber must be greater than or equal
to 10) will always be true. The loop is an infinite loop. In some very unusual
situations an infinite loop is what is required, but such situations are very rare.
If you find yourself with a program that never seems to end, it’s always a good
idea to check for infinite loops.

Sometimes the statements inside a while loop will not be executed at all. If
the condition is initially false, then control skips past the loop and the state-
ments are never executed. There are times, however, when it is clear beforehand
that the statements inside the loop will always need to be executed at least once.
In this case there is an alternative form of indeterminate loop that can handle
this situation more elegantly.

Making things happen. Again and again 209

do…while loops
do…while loops are a specialised form of while loop. In fact any
do … while loop can always be written as a while loop.2 The only advantage
of this type of loop is that the resulting code can be neater. The relationship
between these two types of indeterminate loop is not unlike that between the
if statement and the switch statement – it is possible to get by with only one,
but using both makes for neater programs.

The statements inside a do … while loop are always executed at least once.
The loop is once again controlled by a condition but this time the condition is
tested only after the statements inside the loop have been executed; if the con-
dition is true then the loop is executed once again. The format of the loop makes
the location of the test clear:

do {
// statements

} while (<condition>);

As is now very familiar, the statements inside the loop are enclosed with braces
and are indented. Also as usual, the statements may include any valid Java
statements, including other loops.
do … while loops may also be used to validate values entered by a user.

Their use for this is reasonable since the user is always going to have to enter
the value at least once and therefore the statements in the loop will always be
executed at least once.

A do … while loop can be used to validate user input:

do {
System.out.print ("Enter a number between 1 and 10: ");
aNumber = Console.readInt ();
if (aNumber < 1 || aNumber > 10) {

System.out.println("Error: Number out of range");
}

} while (aNumber < 1 || aNumber > 10);

This is obviously very similar to the example using a while loop and there is
little to choose between the two. Both include some duplication of code; the
while loop example has two System.out.print statements and this version
has the condition tested twice. The two are equivalent; the choice of which to use
in a particular application would come down to the usual matter of style and
taste.3

This observation applies to most cases where an indeterminate loop is used.
If it is obvious that the loop will always be executed at least once then a
do … while loop is the correct choice, but many programs could equally be
written with either form of loop.

A final warning about == and =
Finally, a word about a very common error. Very often an indeterminate loop
executes as long as some variable has a particular value. This is most commonly

2 And indeed, vice versa.
3 It’s interesting that I tend to prefer the do … while version but everyone I work

with seems to use the while version. It really is just down to style and preference –
programming style can be a very personal thing.

210 How to program using Java

the value of some Boolean variable:

boolean finished = false;

while (finished == false) {
// statements

}

or in general:

while (�variable� �� �value�) {
// statements

}

A very common error and careless error is to write loops of this form as:

while (�variable� � �value�) {
// statements

}

or

do {
// statements

} while (�variable� � �value�);

Neither of these loops will behave as expected. If the variable is any type other
than boolean the program will fail to compile. The compiler spots that = has
been used instead of == and points this out. On the other hand, if a boolean has
been used the program will compile correctly, but will then fail to work as
expected when run.4

The problem is that the = (is assigned) operator has been used instead of
the == (equals) operator. If you find that one of your programs has a loop that
is not behaving as expected this is always something to check. The correct loops
are of course:

while (�variable� �� �value�) {
// statements

}

and

do {
// statements

} while (�variable� �� �value�);

The same error can, of course, also crop up in any condition, and particularly
in conditional statements. The trick to avoid this is to get into the habit of never
writing:

finished == true

4 The reason for this distinction is very subtle indeed. The assignment operation actually
returns the value assigned so a statement like "finished = true;" returns true, which
is the correct Boolean type to use in this place. A statement someNumber =0; returns an
integer, which is not the correct type, and so the compiler spots the error. Java is actually
very good at spotting these errors; C or C++ would allow these errors with any type.

Making things happen. Again and again 211

but always using:

finished

which amounts to exactly the same thing (and saves typing). The same
applies to:

finished == false

and:

!finished

The shorter form is probably always to be preferred.

Flow of control
Armed with loops and conditional statements you can now write programs that
have a complex flow of control. While your programs still execute in a general
sense from top to bottom you now have much more control over precisely what
is going on.

This is a very basic skill of programming, so it’s time to get some practice in
with some examples and exercises.

Example 1 – Buddy’s tables revisited
Buddy is very happy with his “Times Table” program, but the contents of his
main method are starting to worry him. There seems to be a lot of repetition, and he is
wondering if a loop could make his program neater.

The question arises of whether he is correct …

Buddy’s program calculated the first six terms of a times table; the number of
the table required was provided as a command line argument. The body of the
main method looked like this:

TimesTable tt = new TimesTable ();
int num = Integer.parseInt (args[0]);

tt.printLine (1, num);
tt.printLine (2, num);
tt.printLine (3, num);
tt.printLine (4, num);

212 How to program using Java

tt.printLine (5, num);
tt.printLine (6, num);

This is indeed an obvious case where a loop can be used. The first parameter of
the printLine method is clearly varying from 1 to 6, and this can easily be
replaced with the control variable of a suitable loop. The loop is determinate
since we know that it will always execute exactly 6 times, so this is a case where
a for loop is appropriate.

The 6 statements printing the tables are simply replaced with:

for (int i = 1; i <= 6; i ++) {
tt.printLine (i, num);

}

This solution is shorter and neater and, as we will see in a moment, is much
easier to extend.

Example 2 – Elvis’s harder tables
Elvis is impressed with Buddy’s program but wants a program that will do more.
He wants a program that will print 13 terms of each table (starting at “0 times” and
finishing with “12 times”. He also wants to print out complete versions of the first
13 tables so that he can get some revision in.

He decides to use Buddy’s program as the basis for his own. What does he need to
change?

Two loops are actually needed in this program. One will count the number of
tables and one will count through the terms of the tables. Since both loops are
always required to execute exactly 13 times this is a clear case where a for loop
should be used for both.

There are also two changes needed to Buddy’s program. The first will make
the program count up to “12 times” rather than the current 6, and the second
will make the program repeat for a number of tables. When more than one
change is to be made to a program it is always a good idea to make changes
to a program one at a time. This means that any error that occurs will always
have been caused by the most recent change; it should therefore be easier to
spot, isolate, and correct.

The first stage is therefore to alter Buddy’s program so that 12 terms are
printed for each table. With the changes just made, this is trivial as the only
change needed is in the loop which becomes:

for (int i = 0; i <= 12; i ++) {
tt.printLine (i, num);

}

This could equally well be written like this:

for (int i = 0; i < 13; i ++) {
tt.printLine (i, num);

}

which is the style that many Java programmers (particularly those brought up
on C or C � �) might prefer; it’s just the usual matter of style and preference.

Now we come on to add Elvis’s requirement for many tables. Once again we
can forecast in advance how many tables will be printed; this is obviously
another determinate loop. Another for loop is needed.

The code looks a little complicated, but it can be built up gradually. The first
step might be to include some neat headings for each table, so this loop would
print out some headings for each of the tables:

for (int table = 0; table < 13; table ++) {
System.out.print("The ");
System.out.print(table);
System.out.println(" Times Table";

}

It’s worth noting in passing here that there is no need for three separate
System.out.print lines here; it’s just done like this to keep the lines on the
page! The < 13 here is another matter of preference. Since the loop is intended
to count up to 12 you might prefer:
for (int table = 0; table <= 12; table ++)

which amounts to exactly the same thing. In this case the control variable has
been given a meaningful name; this becomes a very good idea when there is
more than one loop in a program as there is here.

We already have a loop to print out a particular times table. In the current
program the number of the table required is stored in the variable num which is
obtained via a command line argument:

for (int i = 0; i < 13; i ++) {
tt.printLine (i, num);

}

The trick in writing Elvis’s program to print out a collection of tables is to put
the second loop inside the first. As a first step to doing this, this pair of loops
will print out the required times table 13 times:

for (int table = 0; table < 13; table ++) {
System.out.print("The ");
System.out.print(table);
System.out.println(" Times Table");

for (int i = 0; i < 13; i ++) {
tt.printLine (i, num);

}
}

Again the indentation clearly shows that the inner loop is inside the other. The
final fix is to make the number of the table that is to be generated change
for each execution of the outer loop. This is easily done since the number of
the required table is actually the control variable of the outer loop, table. The
inner loop will use this value rather than the command line argument. The
command line argument is now in fact not used at all.

This gives the final loops that would be used in a complete program:

for (int table = 0; table < 13; table ++) {
System.out.print("The ");
System.out.print(table);
System.out.println(" Times Table");

for (int i = 0; i < 13; i + +) {

Making things happen. Again and again 213

214 How to program using Java

tt.printLine (i, table);
}

}

Example 3 – Elvis’s calculator
Elvis has many demands on his time. He helps with organising the ducks into their
cricket teams and also has to spend a lot of time keeping track of his pocket money. He
has decided that what he needs is a simple calculator to help in these important tasks.
Unfortunately his pocket money does not stretch to buying a calculator, so he has
decided to write one in Java.

He would like to be able to add, subtract, multiply, and divide. Since money is
involved he needs to be able to cope with floating-point numbers. The calculator should
prompt him for two numbers and the required operation and then display the result.
Elvis would prefer not to have to keep rerunning the program for each calculation.

The code to carry out the arithmetic in this example is quite simple. For exam-
ple, to carry out an addition calculation:

double firstNumber;
double secondNumber;

System.out.print ("Enter the first number: ");
firstNumber = Console.readDouble ();

System.out.print ("Enter the second number: ");
secondNumber = Console.readDouble ();

System.out.print (firstNumber);
System.out.print (" + ");
System.out.print (secondNumber);
System.out.print (" = ");
System.out.println (firstNumber + secondNumber);

This is fine for a program that is just going to handle addition, but a more
general approach is needed for this program. At the start of the program it’s
quite impossible to forecast whether the calculation required will be an addi-
tion, subtraction, multiplication, or division. A conditional statement is needed;
switch is the obvious choice as there are four distinct possible operations that
might be carried out. The user must be prompted to enter the symbol repre-
senting the required calculation and a switch statement will choose the
appropriate action and carry it out. A new variable to store the result will also
be needed.

The code for a basic calculation now becomes:

double firstNumber;
double secondNumber;
double result;
char operation;

System.out.print ("Enter the first number: ");
firstNumber = Console.readDouble ();

System.out.print ("Enter the second number: ");
secondNumber = Console.readDouble ();
System.out.print ("Enter the operation (+ , - , *, /): ");
operation = Console.readChar ();

Making things happen. Again and again 215

switch (operation) {
case ' + ': result = firstNumber + secondNumber;

break;
case ' - ': result = firstNumber - secondNumber;

break;
case '*' : result = firstNumber * secondNumber;

break;
case '/' : result = firstNumber / secondNumber;

break;
}

System.out.print (firstNumber);
System.out.print (" ");
System.out.print (operation);
System.out.print (" ");
System.out.print (secondNumber);
System.out.print (" = ");
System.out.println (result);

As it stands this switch statement will fail and incorrect results will be pro-
duced if an invalid character (one that does not represent an operation) is
entered. This means that the operation character (stored in the variable called
operation) must be validated as it is entered. This involves using a suitable
loop to warn the user of the error and to ask them to re-enter. The code to do
this follows a familiar pattern:5

System.out.print ("Enter the operation (+ , - , *, /): ");
operation = Console.readChar ();

while (operation != ' + ' && operation != ' - '
&& operation != '*' && operation != '/') {

System.out.println ("Error: Invalid Operation");
System.out.print ("Enter the operation: ");
operation = Console.readChar ();

}

This ensures that the switch statement has a valid character to process.
Elvis wants the program to execute over and over again so obviously another

loop, controlling the whole program, is required. This loop will always execute
at least once and so this time a do … while loop is the appropriate choice. The
loop is controlled by a Boolean variable finished, which is initially false
and is set to true only when the user indicates that they do not want to run the
program again.

A prompt is needed to ask the user if they want to run the program again and
a simple dialogue gets the user’s response and stores it in a char variable
answer:

System.out.print ("Run Again? (y/n): ");
answer = Console.readChar ();

and a conditional statement sets the finished variable if appropriate:

if (answer == 'y') {

5 You have now seen a lot of familiar patterns as you have read these chapters. This is a good
thing. One of the “tricks” of programming is spotting these patterns in a problem, and real-
ising tht a solution to some other problem can be adapted to the new problem. This is why
it’s a good plan to make sure that you never throw away any programs that you write.

216 How to program using Java

finished = true;
}

or, equally:

finished = (answer == 'y');

Slightly better programming style (and dialogue design) is to consider the fact
that the user might enter either an upper case or lower case letter and to use:

if (answer == 'y' || answer == 'Y')

as the conditional statement.
If a program is to present the user with a good dialogue it should also enforce

the entry of y or n as an answer to this prompt. This extra feature has been
added to the complete program that follows. This program also handles
the case where the operation is division and the second number is 0 it is
necessary to avoid an error caused by a division by this 0.

Here is the final program. While the statements that carry out the steps to
solve the program are very few in number, there are many more that control
the program flow, produce the dialogue, and deal with possible error cases.
It is quite usual for a great deal of any program to be carrying out tasks such
as these.

Take a close look at this program and make sure that you understand what’s
going on.

/* Calculator.java – A simple calculator for all Elvis’s needs.

Author : AMJ
Date : 20th December 2002
Platform : Java, Linux

Red Hat 7.3, JDK 1.4
*/

import htpuj.*;

public class Calculator
{
private double firstNumber, secondNumber;
private char operation;

public Calculator () {}

// Receive user input
public void getInput ()
{

System.out.print ("Enter the first number: ");
firstNumber = Console.readDouble ();

System.out.print ("Enter the second number: ");
secondNumber = Console.readDouble ();

System.out.print ("Enter the operation (+ , - , *, /): ");
operation = Console.readChar ();

while (operation != ' + ' && operation != ' - '
&& operation != '*' && operation != '/') {

System.out.println ("Error: Invalid operation");
System.out.print ("Enter the operation (+ , - , *, /): ");
operation = Console.readChar ();

}
}

// Perform calculation
public void calculate ()
{

if (operation == '/' && secondNumber == 0.0) {
System.out.println ("Error: attempted to divide by 0");

}
else {
double result = 0.0;

switch (operation) {
case ' + ': result = firstNumber + secondNumber;

break;

case ' - ': result = firstNumber - secondNumber;
break;

case ' * ': result = firstNumber * secondNumber;
break;

case ' / ': result = firstNumber / secondNumber;
break;

}
System.out.print (firstNumber + " " + operation + " "

+ secondNumber + " = " + result + "\n");
}

}

// Loop repeatedly while user wishes to perform more calculations
public void run ()
{
char answer;
boolean finished = false;

while (!finished) {
getInput ();
calculate ();

System.out.print ("Run again (y/n)? : ");
answer = Console.readChar ();

do {
if (answer == 'n' || answer == 'N') {
finished = true;

}

else if (answer != 'Y' && answer != 'y') {
System.out.println ("Error: Please enter \'y\' or \'n\'");
System.out.print ("Run again (y/n)? : ");
answer = Console.readChar ();

}
} while (answer != 'y' && answer != 'Y'

&& answer != 'n' && answer != 'N');
} // while (!finished)

}

public static void main(String args[])
{
Calculator calc = new Calculator ();

calc.run();
}

}

Making things happen. Again and again 217

218 How to program using Java

This is the longest program that you have seen so far and there are a few things
to notice:

● The indentation shows at all times which statements are controlled by which
control statements.

● There are often loops within loops and conditional statements within other
conditional statements and loops. The indentation helps to keep track of
which statements are controlled by which other statements.

● There are sometimes many statements enclosed between one set of braces.
Where the closing brace is a long way away from the corresponding opening
brace, a brief comment has been added to emphasise what the brace is
ending.

● The calculator itself has been modeled as an object, so the main method is
only two lines long! The calculator is first created, and then told to run.
This is quite a common form for Java programs.

This is a lengthy program containing most of the Java that you have met so
far. Take some time to go through it and make sure you understand what’s
going on.

15.1 Write a program that will print a triangle made up of stars, as follows:

*
**

The number of stars in the final line should be provided by the user in answer
to a suitable prompt. The program should ensure that the provided value
is at least one and should allow the user to re-enter the value if an error is made.

Your program should use a simple class, Triangle, that has one integer
attribute to represent the height and a simple method to display the triangle.

15.2 Write a similar program (using a similar class) that prints a square made
up of stars:

Making things happen. Again and again 219

As before, the number of stars making up each side of the square should be
provided by the user. This number should be positive.

15.3 Using your two programs as a starting point write a program that
presents the user with a small menu:

Shape Menu
~~~~~~~~~~

1. Draw a Triangle
2. Draw a Square
Q. Quit

The user should select an option from the menu and should be prompted to
enter the required size of the shape. The program should continue to execute
until the user chooses the Quit option. If the option chosen is not valid then an
error message should be displayed and the menu should be shown again.

Use a class called ShapeDraw or similar.

15.4 Add a further shape (class) to your program. A rectangle (use a class
called Rectangle) requires a height and a width to be entered:

******
******
******

15.5 Finally, change your program so that the user can choose the character
that is used to draw the shapes. This should be done by adding an option to the
menu:

C. Change Character

The first time the program is executed the character should still be *. The char-
acter used must be one of $, %, * or ^. The simplest way to do this is probably
to add an attribute to each class.

Program loops allow a great deal of flexibility in managing the way that control
flows in a program. They allow for the development of much more sophisti-
cated dialogues and mean that programs may continue to execute until the user
has finished with them. Together with conditional statements loops give a pro-
grammer full control over the order in which program statements are executed.



220 How to program using Java

There are two general types of loop. The first, called determinate loops, is
used when the number of times that a loop will execute is known before it
started. The alternative, called indeterminate loops, gives the extra flexibility of
executing a loop under the control of some Boolean condition. There are two
forms of indeterminate loop, one providing for the special case where it is
known that a loop will be executed at least once.

Loops and other control statements can be used in any program and in 
methods. It is now time to look at some more examples of this and to fill 
in some final details of methods.



221



222 How to program using Java

The techniques for controlling the flow of execution of statements that you have
seen and practised in the previous two chapters can also be used in methods.
Now you should be able to use the techniques from the last two chapters to
write methods that carry out more complicated processing.

This chapter explains some other final features of methods. There are actu-
ally two sorts of parameters that can be used with a method – parameters can
be used as “call-by-reference” or “call-by-value” – and this chapter will explain 
the difference. It will also look at how methods themselves can sometimes be
used as parameters to other methods. Finally, there will be a quick look at 
static methods, methods that can be called without an object.

After reading this chapter you should be able to implement most if not all 
of the methods needed for your classes. You should be able to write methods
that make use of conditional statements and loops, and also other methods! Of
course you should also be able to use these methods from your Java programs.

There is not much new Java in this chapter, but some of it can seem a little 
complicated. Before we start, let’s recap for one last time some of the details of
methods that we have covered so far. A method in Java is defined by a line 
of the form:

public �return type� �method name� (�parameter types�)

Our convention is that methods are public (althoug that is only a convention).
The description itself starts with the type of value that is returned by the
method. This is followed by the name of the method, which is in turn followed
by the types and identifiers of any parameters, in brackets and separated by
commas. This corresponds to the first line of a method declaration.

Such a description is sometimes called a prototype. The description has 
in fact much the same function as a prototype in more familiar engineering



More methods 223

applications where, for example, a model of a car is made before the car itself. 
A method’s prototype shows a potential user how to call the method, and usu-
ally gives a good indication as to its behaviour. Armed with the information
gleaned from the prototype a programmer can write a program that will make
use of the method without having any knowledge at all of how the method
achieves its result. Also, a compiler can compile the part of the program that
uses the method with no knowledge of how the method works; the code that
implements the method itself can be linked in later.

Many methods determine and return exactly one value of the type given as
the first part of the prototype as the return type; if a method does not return a
useful value at all it is defined to return void and is called a void method.
Methods sometimes require values to process in order to produce their result;
these are the method’s parameters, the types and identifiers of which are listed
in brackets after the name of the method. These brackets are always included to
make it clear that we are talking about a method, but left empty if there are no
parameters.
For example:

public double distanceFrom (int x, int y)

defines a public method called distanceFrom that returns a single floating-
point value and requires two integer parameters. Let’s look in a little more
detail at precisely how these parameters are passed into the method.

Call-by-value and call-by-reference
Many of the methods we have seen so far have processed one or more param-
eters. Specifically they have processed the values of one or more parameters.
The distanceFrom method, for example, could be called like this:

Duck elvis = new Duck ();
double distance;

distance = elvis.distanceFrom (5, 3);

where the parameters are the two literal values 5 and 3. It could also be called
like this:

Duck elvis = new Duck ();
int x = 5;
int y = 3;
double distance;

distance = elvis.distanceFrom (x, y);

This would have much the same effect. The point here is that it is the values of
the variables x and y that are used by the method. Using x and y in this way is
exactly the same as passing the literal values 5 and 3.

We would probably be very surprised if calling this method changed either
value, and we would certainly expect the values of x and y to be unchanged
immediately after the call to the method. But sometimes an effect like this is
what is required and when this is required a subtly different kind of parameter
is needed.

This section sounds daunting, and to be fair it can be quite a tricky con-
cept to understand at first, but it can help you in writing elegant programs.
There are two ways to pass values to methods; these are call-by-value and 



224 How to program using Java

call-by-reference. The names refer to the different ways the parameters are
treated within the calling method.

We’ll look at call-by-value first, as this is what we have been dealing with so
far, and is indeed what has just been described. As another example, let’s define
a potentially useful method that might be found in some class used in a simple
calculator program:

public int square (int num)

This method would take its argument, square its value, and return the result. 
So we could create a value to square, and print the square:

int number = 8;
System.out.println ("The square of " + number + " is "

+ square(number) );

Now, you might think that the value stored in the variable number is now 64
since that is the value that will be displayed. However, this is not the case:

int number = 8;
System.out.println ("The square of " + number + " is "

+ square(number) );
System.out.println ("The value of number is now " + number);

The output from this code would be:

The square of 8 is 64.
The value of number is now 8.

This might seem surprising, but it can be easily explained (and if you thought
the value would still be 8 all along, then well done!).

It works like this. Whenever a variable of a primitive type (integers, doubles,
and so on) is passed as a parameter of a method, the value of this variable is
copied, and the method works with this copy. So in the example above, the
square method works with a temporary copy of the value stored in number.
Inside the method, of course, this value might have any identifier:

public int square (int num)
{
num *= 2;
return num;

}

or just:

public int square (int num)
{
return num *= 2;

}

When the method terminates, the value of number in the calling method 
is unchanged. The value used in the method (here we called it num) is lost 
forever. The two values have in fact always been separate and have occupied
different parts of the computer’s memory.

Things are different when more complex values are passed to methods.
When objects are passed as parameters to methods, the mechanism is subtly
different, and it is important that you understand how it works and its effects
on your programs so that you don’t have problems later on.



More methods 225

Consider the following, admittedly rather unusual, method:

public static void renameDuck (Duck d, String s)
{
d.setName(s);

}

This method takes two parameters, a Duck object and a String (also an object,
of course). It sets the name of the Duck object to the value of the String
parameter, and does this using the usual mutator method. Notice the extra
word in the method definition – static. In essence this means we do not need
to create an object in order to call the method, but we will discuss static meth-
ods more fully a little later on.

Now, let’s create a Duck object to try it out on. We’ll assume that the class has
a getName selector method that works in the obvious way.

Duck myDuck = new Duck ();
myDuck.setName ("Elvis");
System.out.println ("My duck is called " + myDuck.getName() );
renameDuck (myDuck, "Buddy");
System.out.println ("My duck is now called " + myDuck.getName() );

The output from this snippet would be:

My duck is called Elvis
My duck is now called Buddy

Notice that while we have not explicitly called the setName method on our
Duck object, the name attribute of the Duck object has changed. This can mean
only one thing; the object manipulated within the renameDuck method is not
a copy of the object passed as an argument, but the object itself. In fact, this is
the way objects are passed to methods in Java, and as you have seen, this is fun-
damentally different to the way primitive types are passed.

This is a powerful mechanism, but one that can cause unexplained errors if
not understood properly. You should probably reread this section until you are
sure you understand something about this mechanism. The example programs
should also help.

Using methods as parameters
We have not introduced any new Java in this chapter, but we have highlighted
some important concepts. Many new programmers find reference parameters 
a difficult concept to grasp. It is important that you get some practice and 
that you think about the difference between the two types of parameters. 
This advice is especially timely when we come to look at collections in the next
chapter.

While on the subject of methods, it is worth mentioning that you can actu-
ally pass a method call as a parameter of another method. This may seem
strange, but it is perfectly reasonable when you consider why. Some methods
return useful values – int, String, char, and so on – and some methods take
such values as parameters. Often a method will return a value that would 
be useful for another method to take as a parameter. Rather than having to store
the return value, and then pass this stored value to another method, we are
allowed to simply put one method call inside the other. We have actually been



226 How to program using Java

doing this already with one of the printNeatly methods earlier on:

public void printNeatly ()
{
System.out.println (toString () );

}

System.out.println is a method that prints to the console, and toString
is a method that returns a String object containing information about this par-
ticular duck. This is neater than the equivalent:

public void printNeatly ()
{
String tmp = toString ();
System.out.println (tmp);

}

As another example, suppose that we wanted to use the now familiar
distanceFrom method to display how far a Duck was from some hazardous
object. We could write:

Duck elvis = new Duck ();
double distance;

distance = elvis.distanceFrom(5, 3);
System.out.println ("Elvis is " + distance + " away!");

This is fine, but it is neater to do away with the temporary variable distance
altogether and to write:

Duck elvis = new Duck ();

System.out.println ("Elvis is " + elvis.distanceFrom (5, 3)
+ " away!");

While this form of method call can make your code neater, it is not without
potential pitfalls. It is vital that you carefully check that the return type of the
method to be called as a parameter is the same as the type that the calling
method requires as a parameter. So a method that takes an int as a parameter
can only call a method that returns an int, and so on.

Static methods
And finally, another detail of methods. Once again there is nothing new here
because we’ve been using static methods since the very first Java program; the
main method is an example:

public static void main (String args[])

The main method is special in that it is called without an object being created.
It is in fact called automatically when the JVM is asked to execute a program.

It is possible to define other static methods. These are simply methods
defined within a class that do not need an object of that class in order to be
called. Some Java programmers will, with some justification, frown on the use
of static methods, and we wouldn’t recommend that you start using them very
much, but it would be good to recognise one if you see one!

The declaration of a static method is in the same format as the definition of
other methods except that the word static is added:

public static �return type� �method name� (�parameter types�)



More methods 227

As an example, suppose that we wanted to write a “method” that might be
used to display some menu. The method would need to be defined in a class,
but as there is no need to associate this method with an object, so it could be
static. Assuming the class was called Menu, and the method declaration was:

public static void displayMenu ()
{
System.out.println ("Options");
System.out.println ("1. Option 1");
System.out.println ("2. Option 2");

}

This method could be called with just:

Menu.displayMenu ();

Using methods like this can make programs easier to understand, and it can be
useful especially if there is a need to duplicate blocks of code in a program. 
The message is to use methods like this occassionally and with care!

Methods
There have been three new ideas in this chapter, although you have been using
most of them for some time. All you need is some practice, so it’s on to the
examples.

Example 1 – Locating ducks
The example Duck class in the second example of Chapter 13 included methods intended
to change the position of the duck. It would be useful to have another method to 
determine whether a duck was at a certain position. Its prototype would be:

boolean atPosition (int xPos, int yPos)

What would be the implementation of this method?

The position of the duck is stored in two private attributes, called just 
x and y. The first value provided to this method is the x value to be checked
and the second is the y value. These parameters might be called xPos and yPos
in the method to make their meaning clear. If x is the same as xPos and y the
same as yPos, then the duck is at the location and the method should return
true; otherwise the method should return false.



228 How to program using Java

A simple conditional statement is needed to check whether or not the duck is
at the particular point. The implementation is:

public boolean atPosition (int xPos, int yPos)
{
if (x == xPos && y == yPos) {
return true;

}
else {
return false;

}
}

This structure in a method is very common. It states that if a certain condition
is true the method returns true and otherwise it returns false. It is worth
remembering that such a method can also be implemented by simply returning
the condition; this example could equally well be written as:

public boolean atPosition (int xPos, int yPos)
{
return x == xPos && y == yPos;

}

This second form is obviously much shorter but some might find it too terse
and the longer form clearer. The choice between the two is a question of style
and preference.

To illustrate this point about style one last time, this function could also be
written:1

public boolean atPosition (int xPos, int yPos)
{
if (x == xPos && y == yPos) {
return true;

}
return false;

}

This version works because the second return will never be reached if the
expression is true.

While all these three versions are equivalent, it would be good practice to
choose the one that you prefer and make sure that you always use the same one;
good style is consistent.

Example 2 – Duck summoning
Mr Martinmere is becoming increasingly concerned about the locations of his ducks.
Some of them are very valuable, and it is annoying if they move too far away (and out
of sight of Bruce’s sign). Some preliminary work has been done on tracking ducks 
(in Chapters 11 and 12), and now there will be more.

1 My friend Karim gave me this version when he was checking a version of my C�� book.
He would always write methods like this in this way. I never would; I’d use the version
that just returns the condition. Style is like that; both approaches are fine as long as we’re
both consistent.



More methods 229

The starting point is the existing class for ducks that we have met before. After a
lengthy design process, the ducks have shared out the methods to be written. Buddy has
been given a method with the specification:

Name: summon
Object type: Duck
Purpose: Moves one duck to the position of another.
Parameters: a Duck object
Values Changed: The location of the Duck parameter.
Side Effects: Display on the screen.
Description: The Duck supplied as the parameter is moved

to the same position as the Duck calling
the method.

How does he write this method?

First, let’s clarify what this method is supposed to achieve. Imagine that elvis
and buddy are two Duck objects. This method would move the two to the same
position; the idea is that one Duck object “summons” the other. So, to move
both to the position of Elvis (although only Buddy would move):

elvis.summon (buddy);

Obviously this:

buddy.summon (elvis);

would move Elvis to Buddy’s position, which is rather different to the first 
version.

This short line contains the identifiers of two Duck objects, which are being
used in different ways. The first is being used in the familiar way from all the
method calls we have seen before. The second is different; it is a separate object,
and it is being used as a parameter.

Now, some attribute values are going to change when the method is called,
but this is not going to happen in the ways we have seen before. The method is
going to change the values of the attributes of the object passed as a parameter;
the values of the attributes of the other object will remain unchanged. This
means that the parameter is a reference parameter – the values of its attributes
will be changed.

The heading for the method is:

public void summon (Duck d)

The method to move a Duck is moveTo, which has the new position passed as
two parameters. We can use this on the parameter:

d.moveTo (newX, newY);

where newX and newY are two values representing the new position. These 
values are extracted from the other object:

int newX = getX ();
int newY = getY ();

and the complete method is:

public void summon (Duck d)
{
int newX = getX ();
int newY = getY ();
d.moveTo (newX, newY);

}



230 How to program using Java

An important thing to notice in passing is the different syntax for calling the
methods of the parameter as opposed to the current object. Only the first
requires a prefix.

This method is all well and good, and would work, but there is a potentially
neater way of writing it. There is no need to store the two values in variables;
the methods that generate them could just be used as parameters to the method:

public void summon (Duck d)
{
d.moveTo (getX (), getY() );

}

This is certainly neater, not to mention shorter.

Example 3 – The rusty trolley
Mr Martinmere is concerned about a dangerous-looking supermarket trolley that has
appeared in the pond where Elvis and his friends live. He is especially worried that one
of the (valuable) birds may swim into the trolley and so sustain an injury that would
reduce their value.

He would like a program that will track each of his ducks and will tell him how 
far away they are from the trolley. The program should also warn him if a duck hits the
trolley.

In order to test the program Elvis has once again been fitted with a tracking device.
The pond is marked out in units of one metre, and the trolley is in the water at coordi-
nates 5, 3.

The program should prompt Mr Martinmere to enter the direction in which the track-
ing device indicates that Elvis has moved. It should then display his distance from 
the trolley and should print a warning if he is closer than two metres from it. It would
provide another warning if he actually swims into it.

What class would be needed for this program? What does the program look like?

A Duck class similar to that in Chapter 13 will be needed for this program.
There will need to be two private attributes, one for the x position and one for
the y position. It will also be handy to store the name of the duck, so the
program can be used to track several ducks without confusion. The following
methods will also be needed:

public void moveNorth ()
public void moveSouth ()
public void moveEast ()
public void moveWest ()

public void setX (int newX)
public void setY (int newY)
public int getX ()
public int getY ()

public double distanceFrom (int xPos, int yPos)
public boolean atPosition (int xPos, int yPos)

The implementation of these methods is straightforward. The distanceFrom
method is the same as in the previous example, and atPosition is as in the
first example in this chapter.



The program is on the whole straightforward, but it’s worth going through it
since it contains almost all the Java we’ve seen so far:

● Conditional statements are used to check the input values;
● Conditional statements are used to check the duck’s distance from the Rusty

Supermarket Trolley;
● Loops are used to run the whole program until the user has finished;
● Loops are used to request that the user re-enters incorrect values.

The complete classes and program are below. It is certainly worth spending
some time going through them all to make sure that you understand what’s
going on. If you can, get the program off the web site and play around with it.

/* Duck.java – modified duck class for tracking.

Author : GPH
Date : 17th June 2003
Tested on : Linux (Red Hat 9), JDK 1.4.2

*/

import htpuj.*;

public class Duck
{
private int x;
private int y;
private String name;

public Duck ()
{
x = 0;
y = 0;

}

public void setName (String n)
{
name = n;

}

public String getName ()
{
return name;

}

public void setX (int newX)
{
x = newX;

}

public void setY (int newY)
{
y = newY;

}

public int getX ()
{
return x;

}

public int getY ()
{
return y;

}

More methods 231



232 How to program using Java

public void moveNorth ()
{
y++;

}

public void moveSouth ()
{
y--;

}

public void moveEast ()
{
x++;

}

public void moveWest ()
{
x--;

}

public double distanceFrom(int xPos, int yPos)
{
int dx = xPos – x;
int dy = yPos – y;
return Math.sqrt( (double)(dx*dx + dy*dy) );

}

public boolean atPosition (int xPos, int yPos)
{
return x == xPos && y == yPos;

}
}

/* DuckTrafficControl.java – Improved duck tracking program.
Author : GPH
Date : 19th June 2003
Tested on : Linux (Red Hat 9), JDK 1.4.2

*/
import htpuj.*;

public class DuckTrafficControl
{
private Duck duck;
private final int TROLLEY_X = 5;
private final int TROLLEY_Y = 3;

public DuckTrafficControl ()
{

duck = new Duck ();
}

public void run ()
{
char choice = ' ';

System.out.println ("**** Duck Traffic Control Program ****");
System.out.println ("");
System.out.print ("Enter duck’s name : ");
duck.setName (Console.readString () );

System.out.print ("Enter X coordinate for "
+ duck.getName () + " : ");

duck.setX (Console.readInt () );

System.out.print ("Enter Y coordinate for "
+ duck.getName () + " : ");



duck.setY (Console.readInt () );

do {
printMenu ();
choice = Console.readChar ();
switch (choice) {
case 'n':
case 'N': duck.moveNorth ();

break;
case 's':
case 'S': duck.moveSouth ();

break;
case 'e':
case 'E': duck.moveEast ();

break;
case 'w':
case 'W': duck.moveWest ();

break;
case 'q':
case 'Q': break;
default: System.out.println (choice

+ " is not a valid choice!");
break;

}
} while (choice != 'q' && choice != 'Q');

}

public void printMenu ()
{
System.out.println (duck.getName () + " 's current position is "

+ duck.getX () + ", " + duck.getY () + ".");
System.out.println (duck.getName () + " 's distance from 

trolley" + duck.distanceFrom 
(TROLLEY_X, TROLLEY_Y) );

if (duck.distanceFrom (TROLLEY_X, TROLLEY_Y) == 0.0) {
System.out.println ("**** " + duck.getName ()

+ " has hit the trolley!");
}
else if (duck.distanceFrom (TROLLEY_X, TROLLEY_Y) <= 2.0) {
System.out.println ("**** " + duck.getName ()

+ " is dangerously close to the trolley!");
}
System.out.println (" N – Move North");
System.out.println (" S – Move South");
System.out.println (" E – Move East");
System.out.println (" W – Move West");
System.out.println (" Q – Quit");
System.out.println ("");
System.out.print (" Enter choice (N,S,E,W,Q) : ");

}

public static void main (String args[])
{

DuckTrafficControl dtc = new DuckTrafficControl ();
dtc.run ();

}
}

This is a long program, but it does contain examples of just about everything
that we’ve looked at so far. Read it!

More methods 233



234 How to program using Java

16.1 Find and explain the error (or errors) in the following code:

public void setLength (int len)
{
if(len < 0)
{
return "ERROR!";

}
else {

length = len;
}

}
...
System.out.println("Setting length to " + setLength(4) );

16.2 Modify the DuckTrafficControl class used earlier to incorporate
some further error checking. For example, it should be impossible for a duck to
move to a position with a negative x or y coordinate. You should also check that
the user does not enter a blank string for the duck’s name, or else the program
output could get confusing.

16.3 Further modifications can be made to this program to make it slightly
more user-friendly. For example, it is currently possible to move a duck to the
position occupied by the trolley, and for that duck to swim happily on. There is
also no option to track another duck, other than terminating the program and
starting again. Add this functionality to your code from Exercise 16.2.

Methods can treat parameters in two different ways, depending on what type
the parameter is. The simplest case is the value parameter that simply provides
a value for the method to process; the value may come from a variable or may



More methods 235

be explicitly included. The slightly more complicated situation is a reference
parameter. A reference parameter is always a reference to an object; this refer-
ence is passed into the method, which can make use of the object’s initial attrib-
utes. The same object in the computer’s memory is used in the method as in the
main program and so any changes made to the object in the method also affect
the corresponding object in the main program.

Value parameters allow values to be passed into a method. Reference param-
eters extend this somewhat in that they can allow values to be passed out of a
method, or into and out of a method. However, it must be remembered that this
will only work with objects, not primitive data types such as int or char.

Any valid Java may be used in a method, including conditional statements
and loops. You should now be able to use all the Java that you have learned so
far and you should be able to write complex methods and classes.

As you write more complicated classes your programs will also become more
complex and longer. You may well find that a program of several hundred lines
is quite difficult to edit and manage; it can be awkward to keep track of the
ever-increasing number of variables in your code. Thankfully, Java, as with
most languages, provides various mechanisms for grouping similar variables
together into collections, allowing you to refer to any one of a group of variables
via a common name. This is what we will look at in the next chapter.



236



Collections 237

By now you should understand what a variable is, how you can use it, and
what it is used for. Variables are very good at what they do, but they can only
store a single value. What if you need to process and store two integers? More
often than not you’ll use two integer variables. How about 10 variables, or 100?
Before long your program will become unwieldy, repetitive, and extremely
large. This is a bad thing and so a neater mechanism is required. It is possible
to define variables that can store collections of values.

Java has support for many different ways of storing collections of similar
data, and this chapter introduces two of them – arrays and array lists. Array
lists are more powerful and flexible than arrays, but initially at least, you can
treat them as virtually the same thing.

By the time you complete this chapter, you should be able to write programs
that manipulate collections of data rather than many individual variables. You
should also be capable of identifying where to use arrays, and where to use
array lists, and should understand the fundamental differences between 
the two.

Java supports many kinds of collection. We’ll look at just two in this chapter.
The first is the array. This is in a sense the simplest collection, and also the least
sophisticated. It’s a good place to start because you’ll find something that looks
and works very much like a Java array in almost all programming languages.
After arrays, we’ll look at another type of collection, the list. Finally, we will
look at a particular type of list provided by Java – the ArrayList. This is rather
more sophisticated, mostly in terms of the facilities that Java provides to 
handle it. It is, however, specific to Java although you will find similar things 
in other languages (vectors in C�� being an obvious example). But first, 
arrays.



238 How to program using Java

Arrays
An array is essentially a block of memory locations of the same type, referred
to by a common name. Each location is referred to as an element. As an analogy,
we think of the word, “duck”, rather than the letters “d”, “u”, “c”, and “k”. We
have a word (an array) consisting of a number of letters (elements). Taken as a
whole the word does something useful, and sometimes we treat the whole
word as a single unit. There are times, though, when we are interested in what
the individual letters actually are and we are usually very interested in the
order in which the letters appear.

The individual locations within an array are known as array elements 
(corresponding to the letters in our example), and each element can be referred
to by its position within the array. So rather than using, say, 30 String vari-
ables to store the names of students in a class, we can use an array variable 
containing 30 Strings. Also, rather than having to refer to the 23rd String
variable, we can access the 23rd element of the array.

The first stage in using an array is obviously to declare one and to get hold of
some suitable memory. Generally, an array is declared as follows:

<variable type> <identifier>[];

And initialised as follows:

<identifier>= new <variable type> [<number of elements>];

It is probably best to introduce an example here. Suppose that we want 
to create an array of four integers. This is a process of two stages and is 
achieved by:

int numbers[];
numbers = new int[4];

The first line1 tells the compiler to allocate a block of memory large enough 
to store four integer values. This block can then be referred to by the name 
numbers. The square brackets after the identifier tell the compiler that this
identifier refers to an array. The new keyword on the second line allocates mem-
ory to objects (you have seen it before when creating objects of your own), and
the 4 in the square brackets gives the number of elements in the array. The vari-
able types must match between these lines, or else the compiler will complain.

As usual it is possible to combine these two steps. These two lines could of
course be written as a single statement:

int numbers[] = new int[4];

Now we have an array, we need to access the individual elements. Values are
assigned to the elements in an array using the element’s position in the array
(this position is also known as the index). For example:

numbers[1] = 5; // assigns the value 5 to the element with index 1

To refer to an element of an array, we use the square brackets seen earlier, with
the relevant array index between them. We have in fact seen this syntax before
when we have been interested in extracting a command-line argument. It now

1 Some programmers would argue that it would be better style to write int[] numbers;
This is perfectly legitimate Java.



Collections 239

emerges that the variable args in the header of the main function:

public static void main (Strings args[])

is in fact an array of strings.
Now we also know that the first command line argument is stored in

args[0], which shows us that the index value starts at 0. This means that the
last element in an array might not be quite where it is expected to be!

An unwary programmer wanting to assign a value to the fourth element of
the numbers array might write:

numbers[4] = 1878; // Error!

This illustrates an important property to remember when dealing with arrays.
In Java (as in most programming languages), arrays are indexed from 0
upwards. So the first element of the array is referred to using index 0. Similarly,
the eleventh element has index 10. More generally, an array with n elements has
the first element at index 0 and the last element at index n�1.

The value used in the array declaration is the size of the array, not the index
of the last element. This is a frequent cause of confusion, and new programmers
often find themselves trying to access the fifth element of a 4-element array, 
for example. And even experienced programmers aren’t immune from this 
(if they’re truthful!).

It follows that the number of elements in the array is a number that is 
both useful and interesting. Java lets us extract this value, as we will see in a
moment.

Frequently, if this “out-by-one” error exists in your code, your program will
crash when you try to run it and will provide an error message complaining
about something called an ArrayIndexOutOfBoundsException. This error
tells you that the Java interpreter has tried to access an index larger than the size
of the array. The compiler will not stop you from trying to go past the end of
the array (it isn’t possible to spot that this is going to happen when the program
is compiled), so this is something the programmer needs to take care of, as
many a good program has been flawed by this kind of error. The effects of this
error range from simply crashing at inopportune moments to computing the
wrong result and continuing blindly on.

Assuming you follow the advice given in the chapter on testing, these errors
should be ironed out fairly easy, but it is worth pointing out anyway.

Now for a larger, more useful example. Here’s a simple program that makes
use of an array.

/* ArrayDemo.java – demonstrating a simple array

Author : GPH
Date : 6th February 2003
Tested on : Linux (Red Hat 8.0), JDK 1.4.1

*/

import htpuj.*;

public class ArrayDemo
{

private String names[];
public ArrayDemo (int numElements)
{
names = new String[numElements];

}



240 How to program using Java

public void populate ()
{
// Using a for loop, assign a value to each element in turn
for (int i = 0; i<names.length; i++) {

System.out.print ("Enter name " + (i+1) + ": ");
names[i] = new String (Console.readString () );

}
}

public void printContents ()
{
System.out.println ("");

// Using another for loop, print out the values in turn
for (int j = 0; j<names.length; j++) {
System.out.println ("names[" + j + "] = \"" + names[j]

+ "\".");
}

}

public static void main (String args[])
{

if(args.length != 1) {
System.out.println ("Usage: java ArrayDemo <num of names>");
System.exit (0);

}

int numNames = Integer.parseInt (args[0]);

ArrayDemo demo = new ArrayDemo (numNames);
demo.populate ();
demo.printContents ();

}
}

This small class and driver program demonstrates almost everything you
need to know about arrays. The first thing the program does is check that a sin-
gle command line argument has been passed at runtime:

if(args.length != 1) {
System.out.println ("Usage: java ArrayDemo <num of names>");
System.exit (0);

}

This demonstrates how to find the length of an array:

<arrayname>.length

This is very useful, and it is well worth remembering. It is also worth remember-
ing that there are no brackets after length, which is perhaps a little confusing.

Now back to the program. If the required argument is not present, an error
string is printed and execution halts. If the argument is present, this is convert-
ed into an int value, and used in the creation of the program object:

int numNames = Integer.parseInt (args[0]);
ArrayDemo demo = new ArrayDemo (numNames);

It is worthwhile noting here that the array is initialised within the constructor.
This sort of action is commonplace – the constructor is frequently used to 
initialise variables at the time the object is created, and can remove the need for
calling the constructor together with several mutator methods.



Collections 241

The program does nothing more than prompt for the required number of
names, add these to the array, and then print out the array’s contents. This is not
the most useful program in the world, but it does demonstrate the fundamen-
tals of arrays – creation, addition of elements, and subsequently accessing these
elements. This structure, especially with some sort of processing before the
array is output, is very common indeed in all sorts of tasks.

Creating an array using an initialiser list
So far, we have created arrays in a three-step process; the first is to declare the
array by name and type, it is then initialised to the required size, and finally
each element is given an initial value. This is a bit long-winded, especially when
the values required are known in advance, and so it is possible to perform all
three steps at once when we do know the values and types of the elements
beforehand.

The syntax is similar to the usual declaration, but includes a list of the initial
values between curly brackets:

int digits[] = { 0,1,2,3,4,5,6,7,8,9 };
char vowels[] = { 'a', 'e', 'i', 'o', 'u' };
String ducks[] = { "Elvis", "Buddy", "Cilla" };

Notice we don’t need to explicitly tell the compiler how large each array is; it
can work it out for itself by counting the number of elements in the initialiser
list. This means that digits is automatically created as an array of ten integers,
for example.

Arrays declared in this way can then be treated like any other so digits[2]
is 2, vowels[0] is 'a', and ducks[ducks.length-1] is "Cilla".

Arrays of objects
We have seen that arrays can contain values of any type. In object-oriented 
programming it is very common indeed for this type to be an object type.
Collections of objects can be sorted, searched, and displayed in all sorts of ways.
The third example above is in fact an array of objects; ducks is an array of
String objects.

Here’s another simple example assuming a simple Duck class. The class
stores the duck’s name and their cricket average. There is a constructor that
takes initial values for these two, and a method toString that prints them out
in some neat format. Creating ducks is simple:

Duck tempDuck1 = new Duck ("Elvis", 100.0);
Duck tempDuck2 = new Duck ("Buddy", 50.0);
Duck tempDuck3 = new Duck ("Cilla", 150.0);

These ducks can be put into an array. The syntax is just the same as with 
any other array and, since we know the values in advance, we can use an 
initialiser list:

Duck theDucks[] = {tempDuck1, tempDuck2, tempDuck3};

The three Duck objects are now elements in the theDucks array. The array
itself does indeed also look rather like an object, a concept we’ll see more of
when we come to array lists in a moment.



242 How to program using Java

Each element of the array is an object, so we can use any available methods
of the class on an element. So to find out the details of the duck in the first 
element:

System.out.println (theDucks[0].toString () );

or the last:

System.out.println (theDucks[2].toString () );

or even:

System.out.println (theDucks[theDucks.length – 1].toString () );

which would work no matter how many elements there were in the array. 
In these cases, and any others involving objects, it is possible to omit the call to
the toString method, as the default version of this is called automatically
inside a call to System.out.print or println.

Finally, a loop that would print out the details of all the ducks would 
probably be useful:

for (int i = 0; i < theDucks.length; i ++) {
System.out.println (theDucks[i]);

}

As we will see, processing an array using a loop in this way is a very common
programming task indeed.

Array checklist
As a last word on arrays (for now at least), some things to remember when
using arrays:

1. All elements in an array must be of the same type. The type can be an object
type.

2. The array must be declared with the square bracket notation.
3. The array must be initialised with its length in square brackets.
4. Array elements are indexed from 0 to “array.length�1”.
5. Individual elements are accessed with the notation “array[index]”.

Arrays are a fine first collection to take a look at. Most, if not all, things that
we might want to do with collections can be done with arrays, but we would
soon find that some were rather complicated. Operations on collections are very
common and so most programming languages provide more complex types to
store them; the time has come to look at one provided by Java.

Variable length collections
The description of arrays has hopefully given you some idea of the sort of 
operations that are often carried out on collections. A complete collection can 
be displayed, searched, or sorted, for example, and this sort of operation is 
reasonably easy to program using an array. Things get more complicated with
an array when the collection has to be manipulated – when new elements have
to be added or deleted. This is possible with an array, but it can be rather com-
plicated and error-prone. At the same time these operations are quite common,
so some sort of structure that automatically supports them is often provided.



Collections 243

The problem is that in most programming languages, including Java, arrays
have a fixed size; once they are initialised, they have the same number of ele-
ments throughout. To add more elements it is necessary to create a new, larger
array and to copy the elements between the two. If elements are removed, the
array will still occupy the same amount of memory space, which can be waste-
ful, especially in large and complex programs. Of course, a smaller array can be
created and the elements copied but this can be time consuming. Something a
little more sophisticated is needed if the size of a collection is going to change.
In general terms, most programming languages provide some such collection,
known as a list.

A Java ArrayList is just such a structure. It allows the programmer to
dynamically allocate more storage should the number of elements grow, and
reduce the allocation should fewer elements be needed for some reason. There
are also plenty of handy functions available for searching and so on.

It shouldn’t come as a surprise that an array list is defined as a class, and the
useful functions are methods. One effect of this is that this section is also an
introduction to using the Java built-in classes, and a reminder of the importance
of delving in the API for the required documentation.

The API documentation can be found a few clicks away from http://
java.sun.com/. The documentation first provides a list of the standard Java
packages. ArrayList is found in the java.util package, so a bit of scrolling
is needed. Clicking through to the java.util page gives (among other things)
a list of all the classes in the package, and clicking ArrayList provides all we
could possibly want to know about array lists. Much of this is intended more
for programmers planning to implement a Java system; the important bit for
our purposes is the list of methods a little way down.

You can read all this at your leisure. You could also have a look round 
for other classes that might be useful; Vector, for example, is another class for
storing collections.

We have seen that ArrayList is part of the java.util package, so if 
a program is planning to use an array list it is necessary to add the import
statement:

import java.util.ArrayList;

to the start of any program. Now let’s use one.

Creating an array list
The documentation also reveals that the constructor for this class is overloaded.
We’ll make do with just two of these constructors; an array list can be created
with an initial default capacity of 10, or it can be created with some other 
capacity.

The format for using the first version is as you should have come to expect
by now:

ArrayList <identifier> = new ArrayList();

and the second is only slightly different:

ArrayList <identifier> = new ArrayList(<capacity>);

As with any other object, an array list is referred to by an identifier. This 
declaration calls the appropriate constructor which takes care of allocating 



244 How to program using Java

the correct amount of memory. So:

ArrayList myArrayList = new ArrayList (4);

creates an empty ArrayList called myArrayList, which can initially hold
four elements. While this:

ArrayList myArrayList = new ArrayList ();

might intuitively appear to create an array list with no capacity, but actually
(according to the API documentation) creates one that can initially hold 
10 elements.

Adding elements
Array lists (which we will now simply call lists) can store elements of any type,
provided that they are objects. This means that it is complicated (but possible)
to use lists for the base types, so we’ll use the simplest object type we have –
String – in these examples. We’ll use a simple list of names, declared:

ArrayList names = new ArrayList ();

Elements are added to a list using the add method, and once again this is 
overloaded. The default is for the newly added element to appear on the end of
the list. For example,

names.add ("Elvis");

will add a String object with the value "Elvis" to the end of names. It is also
possible to specify where in the list you wish the new element to be inserted.
For example:

names.add (0, "Buddy");

will add the String object, "Buddy", to index 0 of names, right at the start.
If there is no space in the list for a new element it will grow automatically. If

an element is added at a particular place all the other elements will automati-
cally shuffle along to make room, and the list will grow if needed. It really is
rather neat.

You can actually add objects of any type to an ArrayList – they are treated
internally as being different instances of the same class, even though to the 
program they may be wildly different. Unfortunately, this means that int,
char, double, and so on, cannot be added directly to an ArrayList, as they
are not objects. We will discuss how they can be indirectly added later on.

But first we should take a look at what is in our list.

Displaying the array list
There is no handy method to print out a list, so we have to resort to the strate-
gy used for arrays and use a loop. The size method will provide the number
of elements in the list, so the loop is determinate. We also need a method for
extracting a particular element; the API documentation reveals that this is
called get.

The loop to display the list is then very similar to the ones we used to print
out an array:

System.out.println ("The list now contains: ");
for (int i = 0; i < names.size (); i ++) {
System.out.println (i + ": " + names.get (i) );

}



Collections 245

And running this would reveal that the names list currently contains:

0 Buddy
1 Elvis

Deleting elements
A list can change size during the running of a program. We’ve discussed how
to make it larger, so it would make sense to talk about how to remove elements.
There are two possibilities here:

● We want to remove a particular element, no matter where it happens to be in
the list.

● We want to remove the element at a particular location, no matter what 
element is stored there.

There is a method, imaginatively named remove, which can be used in the 
second of these two ways. This:

names.remove (0);

will remove the String object that is stored in the “0-th” (that is the first) 
element of names if it exists.

Removing a particular element no matter where it is in the list is a little more
complicated,2 and is a two-stage process. The first stage is to find the index
required using the indexOf method:

int position = names.indexOf ("Elvis");

and then this value is used to remove the element:

names.remove (position);

Of course these two steps can be combined:

names.remove (names.indexOf ("Elvis") );

In either case it is only the first element with this value that is removed.
Finally, if we want to be drastic, there is a method to remove all the elements

in a list. This:

names.clear ();

will erase every element currently belonging to names.

Changing elements
If we want to simply change an existing element, we can use the set method:

names.set(0, "Cilla");

will change the first element of the ArrayList to match the String
"Cilla". This means that we only require one operation to change an element,
rather than the two that would otherwise be needed (remove an element, insert
its replacement at the corresponding location).

2 If you check the documentation for the Vector class you will see that it has an 
overloaded version of remove that does this in just one step.



246 How to program using Java

Other methods
The documentation also describes a few other methods that can come in useful:

● contains – returns true if an element is found in the list.
● isEmpty – returns true if the list is empty.
● lastIndexOf – returns the last index of a value (compare this with indexOf

used above).

There are a few more – check the documentation for details.

Using elements
Using an element of a list is a little more complicated than using an element of
an array; in a way this is the trade-off for all the neat functions. Elements 
of a list cannot be referenced in the same way as those of an array, as they do
not use the same notation in Java. The syntax that is required can look a little
odd at first.

The element at a given position is found as follows:

String aString = (String)names.get (2);

which will cause the String aString to refer to the object stored in the third 
element of the list. This notation may seem a little strange at first, but it is 
actually an example of casting (which you met earlier – casting from a double
to an int, for example).

The notation tells the compiler that we wish to treat the object accessed in this
way as a String. Internally, an ArrayList treats all its elements as if they
belonged to a single class, called Object. This means that objects of different
types (Duck and String, for example) can be stored in the same ArrayList.
This is very neat and can be very powerful but it also means that we have to
explicitly tell the compiler how we want to treat each object we access within
the list. So if the element were a Duck object and was in a list called ducks, we
would use the statement:

Duck aDuck = (Duck)ducks.get (2);

We need to be careful here, as if we attempt to cast to the wrong object type,
we can end up with all sorts of weird happenings, ranging from malfunction-
ing code to compiler errors. With this in mind, it is usually safer to restrict a
ArrayList to storing a single object type, thereby avoiding such errors. In any
case storing several object types in an ArrayList brings other problems. For
example, it is not easy to search for a particular object – usually you are required
to use methods of a class to determine whether this is the object you are look-
ing for. The lists also become harder to sort, and any objects in the list, which
do not override the default toString method, can cause problems with any
output required.

As a final word on ArrayLists, we have seen that base types – int, char,
and so on – cannot be added directly to a list, as they are not objects. The
designers of Java saw that this sort of situation may well arise and cause prob-
lems, so they have provided a solution, known as a wrapper class. This is a way
of encapsulating a primitive value in an object, so it can then be manipulated in
the same way as any other object.

The wrapper class for int is Integer, that for char is Character, that for
double is Double, and that for boolean is Boolean (we are unlikely to use



Collections 247

this last one however). These classes are created by taking the corresponding
primitive value as a parameter, and can then be manipulated via methods. It
works like this:

ArrayList numbers = new ArrayList ();
Integer myInteger = new Integer (2);
numbers.add (myInteger);

Compare this with the following, which is not allowed:

ArrayList numbers = new ArrayList ();
int myInteger = 2;
numbers.add (myInteger); // Not Allowed!

To extract the int value from this Integer object, the intValue method is 
provided:

int iVal = myInteger.intValue (); // iVal becomes 2

So an int value can be encapsulated (or wrapped) in an object, and that int
value can later be extracted from that object. Now you should be able to use
array lists to store lists of numbers (but you might well decide that arrays are 
less bother!). The same approach works with the corresponding methods for
the Character and Double classes:

Double myDouble = new Double (3.14159265);
double dVal = myDouble.doubleValue (); // dVal == 3.14159265

Character myCharacter = new Character ('x');
char cVal = myCharacter.charValue (); // cVal == 'x'

Collections as parameters
It is quite common for collections to be passed to methods as parameters. 
Array lists are objects and are therefore passed by reference, as explained in the
previous chapter. Arrays, which are not really objects or base classes are a little
more complicated; this quick section explains why.

This is probably best illustrated with an example, so here is a description 
for a simple method. The method (which is admittedly not very useful, but it’s
concepts we’re after here) just trebles the integer value passed to it; but the
value is not returned. It looks like this:

public void treble (int val)
{
val *= 3;

}

Suppose for some reason a program is needed to treble all the elements of an
integer array, an attempt to do this might be:

int numbers[] = { 1, 2, 3, 4, 5 };

for(int i = 0; i < numbers.length; i ++)
{
treble (numbers[i]);

}

Now, this code will compile and run, but it won’t achieve very much; it 
would turn out that the array remains unchanged. To understand why this is,



248 How to program using Java

remember that primitive types are always passed by value, while object types
are passed by reference. In this example, every time the treble method is
called, a single primitive value is passed as a parameter. So it is the value of this
primitive that is copied and the method trebles this copy. There is no change to
the original.

An alternative approach would be to rewrite the method so that it took the
whole array as a parameter. This method might be written:

public void trebleArray (int array[])
{
for(int i = 0; i < array.length; i ++) {

array[i] *= 3;
}

}

The code to call the method would also require a quick rewrite:

int numbers[] = { 1,2,3,4,5 };

trebleArray (numbers);

This would work as required, and the array would contain the expected values

{ 3, 6, 9, 12, 15 }.

This works because, for the purposes of method calls, an array is passed as if it
were an object – by reference. This means that in the example above, the array
which is manipulated by the trebleArray method is actually the array
passed to the method initially. As no copy is made (and so the same memory
locations are used), the calculations performed by the method actually affect the
array directly.

An array in Java is a strange beast. It isn’t a primitive data type as such – you
can’t declare something as an array type (as you can just declare an ArrayList),
it must be declared as an array of values of the same type. However, it isn’t quite
an object in that you don’t initialise an array in the same way as a Duck, for
example, and there are no array methods (the array.length notation is more
like an attribute of an array and has no brackets).

This is a subtle but important concept, which can be used to write elegant
programs, but can also cause elusive logic errors within your code if you’re not
careful.

Now we can move on to look at a very common operation on collections –
sorting.

Sorting
While collections of objects are often useful, it is a frequent requirement of a
program to sort the elements of a collection into some meaningful order. Once
the values are stored in some suitable collection, it is fairly easy to sort them
into whichever order you choose. Some of Java’s built-in classes provide a
method to sort the values automatically, but ArrayList doesn’t and so they, 
like arrays, have to be sorted “by hand”.3

3 This is not strictly true – the Collections class (in package java.util) provides 
a static method called sort, which will sort an ArrayList, and other types of collection.
Read about it in the API documentation or elsewhere on the web, and try it out for 
yourself!



Collections 249

Collections are sorted by using what are known as sorting algorithms. There
are many different algorithms, some simple, some complex, some efficient, 
and some slow. Entire books have been written on the subject, so we won’t be
blazing any trails in this section. Suffice to say that the examples you will 
be using and the programs you will write later are simple, and do not contain
huge amounts of data, so simple algorithms will be more than satisfactory.

In most books on learning to program, in whatever language, the first sorting
algorithm to be introduced is one called Bubblesort, and this is the algorithm we
will be using. It is not the most efficient algorithm, but the code is easy to write
and understand. In any case, describing Bubblesort in a book about program-
ming is such a fine tradition that it should obviously be included here.

First, we’ll explain how the algorithm works, and then we’ll illustrate this
with an attempt to use it to sort an array. Bubblesort will work the same way
with any sort of data proved that, obviously, the values can be compared in
some way. For the moment, we’ll use integers to keep things simple.

The basic idea of Bubblesort is that we step through a list of values (usually
numbers or strings), and compare each pair of adjacent elements with one
another, according to some comparison rule. If the elements in the pair are in
the wrong order, they are swapped over, and we move on to compare the next
two items. So the higher values are shifted towards the end of the list, and the
lower values towards the bottom.

It may be best to visualise this process with a list of numbers. Let’s suppose
that we want to sort this list of integers into ascending order. The comparison
required is simply “less then”, so if the number of the left is less than the 
number on the right they are in the correct order. The list initially is:

8 9 6 4 3

In the first step, the first two items (8 and 9) are compared, and found to be
in the correct order. So the list remains unchanged. Next the 9 and 6 are com-
pared, found to be in the wrong order, so they are swapped, making the list look 
like this:

8 6 9 4 3

Next the third pair of items – 9 and 4 – are compared, found to be in the
wrong order, and swapped:

8 6 4 9 3

and finally, the 9 and 3 will be swapped after the final comparison:

8 6 4 3 9

So we say that the highest value has “bubbled” its way to the end of the list,
hence the name of the algorithm. In fact, the highest value is guaranteed to find
its way to the end of the list after the first set of comparisons. Try it and see!

Of course the list is not sorted yet. The algorithm must be applied again; in
fact, the algorithm must be applied until the list is correctly sorted.

Continuing, the second set of comparisons would proceed as follows:

6 8 4 3 9 (8 and 6 compared and swapped)
6 4 8 3 9 (8 and 4 compared and swapped)
6 4 3 8 9 (8 and 3 compared and swapped)
6 4 3 8 9 (8 and 9 compared, no swap required)

So now the second highest number, 8, has bubbled to the end of the list.



250 How to program using Java

In this case it takes another three passes to fully sort this list, making 
5 passes for a list of 5 values. In fact, an unsorted list of n values will be 
guaranteed to be in the right order after n passes. This is obvious once you
appreciate the pattern of the highest elements bubbling to the end.

Bubblesort is not as efficient as some alternative algorithms (others would
take fewer passes to sort the list above, for example, or would need fewer com-
parisons), but it is easy to visualise, and in practice it is fine for sorting small
lists of values.

Now, armed with this quick and dirty introduction, let’s implement this 
algorithm in Java, and sort an array of integers. The implementation involves
two nested for loops – one counting the number of passes through the algo-
rithm (which is determinate because we know how many elements there are),
the other counting the comparisons during each pass.

Obviously, before we can even think about sorting an array, we need to 
create it:

int numbers[] = { 8, 9, 6, 4, 3 }; // unsorted array

Now, assuming again that we plan to sort these values into ascending order, the
basic logic of the Bubblesort algorithm is:

for every pass through the list:
for every pair of elements (x,y):

if x is larger than y, swap them over

So a first attempt at coding our for loops would be:

for (int passes = 0; passes < numbers.length; passes ++) {
for (int index = 0; index < numbers.length; index ++) {
/* If in the wrong order, swap elements round */
if (numbers[index] > numbers[index+1]) {
numbers[index+1] = numbers[index];
numbers[index] = numbers[index+1];

}
}

}

This does not work! This code would compile, but you wouldn’t get far in using
it, as there are at least two problems with it. First, the mechanism for swapping
the elements is flawed. Let’s take the first pass as an example:

index 0 1 2 3 4
elements 8 9 6 4 3

When the loop comes to swapping the 9 and 6 over, here’s what happens:

numbers[2] = numbers[1];

So at this point, the values in the array are:

index   0 1 2 3 4
elements 8 9 9 4 3

You might have spotted the problem already – in the assignment statement
above, the value 6 has been lost forever and we have two 9s. So when the 
second statement in the swapping section gets executed, we are trying to copy
the same value back to where it came from; the actual effect of this step is that
the array is unchanged since the two are the same.



Collections 251

The way to work around this is to use a temporary (or buffer) variable to
store the value that would otherwise be lost:

int tmp; // Buffer variable
if (numbers[index] > numbers[index+1]) {

tmp = numbers[index]; // store the 1st variable
numbers[index] = numbers[index+1]; // move the 2nd variable
numbers[index+1] = tmp; // Copy the 1st variable back

}

This only solves one of the two problems with the first attempt to program
the algorithm. The other problem is also subtle, but one we have hinted at 
earlier in the chapter. Let’s take a close look at the inner loop – the one that 
compares successive pairs of elements. As matters stand it is executed 5 times,
once for each element of the array. The problem comes at the end of the array
when the comparison would be:

if(numbers[4] > numbers[5])

Again, you might be able to see the problem now. Arrays are indexed from 0,
and so our 5-element array is indexed from 0 to 4. Hence in the statement
above, we are attempting to step past the end of the array. This causes an
ArrayOutOfBoundsException run-time error, which stops your program in
its tracks before it has a chance to do anything useful.

For an array of 5 elements, there are only 4 pairs of elements to compare on
each pass (0 and 1, 1 and 2, 2 and 3, 3 and 4), so the second of the for loops
should only execute n�1 times for an array of n elements.

A much better version of the algorithm, with these problems ironed out,
looks something like this:

int numbers[] = { 8, 9, 6, 4, 3 };
int tmp;

for (int passes = 0; passes < numbers.length; passes ++) {
for (int index = 0; index < numbers.length-1; index ++) {

if (numbers[index] > numbers[index+1]) {
tmp = numbers[index];
numbers[index] = numbers[index+1];
numbers[index+1] = tmp;

}
}

}

Notice that in this version the declaration of the tmp variable has been moved
outside of the for loops. This does not affect the running of the program, but
it is more efficient, as this variable is now declared only once, and used only
when a swap is needed. If it were declared inside the if statement, there would
be a variable called tmp created every time a swap was needed, and destroyed
when the next closing brace is reached. In a program this small, this would not
make a significant difference, but thinking about efficiency issues like this is a
good habit to get into, as when you begin to write more complex programs, this
sort of efficiency gain can make programs run significantly faster.

Now, the only thing left to do is to put this code into a reusable form, so let’s
write a method to sort an array.

public void sortArray (int array[])
{

int tmp; // temporary buffer used in swap



252 How to program using Java

for (int passes = 0; passes < array.length; passes ++) {
for (int index = 0; index < array.length–1 ; index ++) {

if (array[element] > array[element+1]) {
tmp = array[element];
array[element] = array[element+1];
array[element+1] = tmp;

}
}

}
}

This is a fine and useful piece of code that you are welcome to use in your
own programs. It will work, pretty much unchanged, with any collection of 
values of any type. It’s not very difficult to change it to work with array lists
provided that the elements of the list can be compared in some way. If we
assume that the elements are strings:

public void sortArrayList (ArrayList a[])
{

String tmp; // temporary buffer used in swap
for (int passes = 0; passes < a.size (); passes ++) {
for (int index = 0; index < a.size () –1 ; index ++) {

if (a[element] > a[element+1]) {
tmp = a[element];
a[element] = a[element+1];
a[element+1] = tmp;

}
}

}
}

Arrays or array lists
The question now arises of when to use an array and when to use an array list.
For the moment we’ll suggest a simple rule. If the collection is never going to
change in size, use an array. If it is going to change in size (or if you’re not sure),
use an array list.

Now it’s time to practise all this with some examples.

Example 1 – A busy duck
You will have gathered by now that Elvis is a busy duck. As well as playing cricket he
also has to meet the deadlines of his Java programming course and all the other demands



Collections 253

faced by a duck today. He has decided that he needs to be better organised; sadly his
pocket money does not stretch to a diary so he has decided to write a program in Java.

Being a properly object-oriented duck, Elvis has decided to implement the class
required for his program first. He needs to store details of his many tasks, and will need
to be able to add new ones and remove ones he has done. He also reckons that sometimes
he will just need to know how many tasks he has to do.

Elvis’s list of jobs is clearly a collection. There is no forecast of how many jobs
he might have at any point in time, so a dynamic array list will be needed. The
class itself will have just this list as an attribute; its methods could include:

● A method to add a new job;
● A method to delete a job once completed;
● A method to list the current jobs;
● A method to display the number of jobs currently in the list.

We’ll also need a constructor, of course. Since the requirements of Elvis’s
eventual program are still unclear we’ll also include another method that might
come in useful; this one will warn him if he has jobs to do.

The class might be called Reminders. Since it’s going to use an array list it
will need to start:

import java.util.ArrayList;

public class Reminders
{
}

The first thing to add is the attribute to store Elvis’s list of jobs. This is an 
array list:

private ArrayList jobs;

This can store any sort of object, of course. It doesn’t matter at this stage what
sort of object it is. In this example, we’ll assume that strings are enough for
Elvis’s purposes, but it would be easy enough to change the class later.

Now let’s work through the methods. Array lists do a great deal for us 
automatically, so most of these are quite short. The constructor comes first; it
just needs to create the empty list which is done by calling the constructor of the
ArrayList class:

public Reminders ()
{
jobs = new ArrayList ();

}

Adding a new job is easy, thanks to the add method of the ArrayList class.
This will need a string containing the description of the new job as a parameter,
and we’ll need to create a new separate String object. It’s a void method and
the body is just one line:

public void addJob (String newJob)
{
jobs.add (new String (newJob) );

}



254 How to program using Java

Deleting a job is a little more complicated. It would be possible to define a
method very similar to addJob:

public void removeJob (String jobDone)

and this would work. But it is possible that because of some error there is no job
with the appropriate name to delete. This is surely going to be of interest to
someone writing a program using this method, and it makes sense to tell them
if it has happened. The simplest solution is to define a method that removes the
job and returns a Boolean value – true if the job was found and false if not:

public boolean removeJob (String jobDone)

This method can use the contains method of ArrayList to see if the job is
there to be removed. If it is not, false is returned. Otherwise the indexOf and
remove methods do the job, as explained earlier in the chapter, and true is
returned.

public boolean removeJob (String jobDone)
{
if (jobs.contains (jobDone) ) {

jobs.remove (jobs.indexOf (jobDone) );
return true;

}
else {

return false;
}

}

Now to keep Elvis up to date with the number of jobs in his list. The method
to display the number of jobs is nothing more than a call to the size method of
ArrayList since the size is simply the number of jobs in the list:

public int countJobs ()
{
return jobs.size ();

}

Similarly a call to the isEmpty method will warn Elvis if there are jobs to do:

public boolean jobsToDo ()
{
return !jobs.isEmpty ();

}

This last method is worth a quick closer look. The logic of the method is:

IF the list is not empty
THEN Elvis has jobs to do, return true

OTHERWISE IF the list is empty
then Elvis has no jobs to do, return false

ENDIF

This could be written in Java as:

if (jobs.isEmpty () == false) {
return true;

}
else {
return false;

}



Collections 255

This is correct but is needlessly long. In general, any attempt to use 
the == operator with Boolean values can be written in a much shorter form.
This is also a handy way to avoid possible errors; remember the warning about
using = in this situation by mistake.

There is now one method to go; Elvis wants to be able to print out a list of all
his jobs. There is currently no way to output anything at all, so we’ll implement
this by first adding a toString method to print out the details of a single job.
Since we know that all the jobs are String objects, this is quite easy:

public String toString ()
{
String rem = "Current Jobs:\n";

for (int i = 0; i < jobs.size (); i ++) {
rem += "Job #" + (i + 1) = ": "

+ jobs.get (i) + ".\n";
}
return rem;

}

The method to print all the details then just needs to print this string returned
from this method:

public void listJobs ()
{
System.out.print (toString () );

}

Finally, a better version of this method would deal with the possibility that
Elvis might be at total leisure with no jobs to do. The jobsToDo method can
detect that, and a suitable message can be displayed instead of the list of jobs:

public void listJobs ()
{
if (jobsToDo () ) {
System.out.print (toString () );

}
else {
System.out.println ("There are no current jobs.");

}
}

The class is complete!

Example 2 – Testing jobs
Elvis is keen to launch straight into writing his program using his new class. Buddy is
somewhat alarmed at this plan, and points out that Elvis should really test his class
properly first. After all, he could end up with a program that doesn’t work properly
because of some error in the class.

Buddy is, of course, quite right. Elvis needs to write a program so that he 
can test the class. This program (such programs are usually called “driver” 
programs) doesn’t need to do anything especially complicated; it just needs to
allow Elvis to use all the methods of his class so that he can test them.

This is a case where the main method of the class can come in useful. Elvis’s
class is intended for use by other programs; it doesn’t “do” anything itself. The
plan is to write a quick program in the main method to help with the testing.



256 How to program using Java

This will mean that the class can be “executed” and tested; it also means that
the driver program will always be with the class and so will always be available
for testing.

There are two approaches to testing a class in this way. The simplest is 
simply to call all the methods in some sensible way and to examine the effects.
The programmer writes a quick method that uses the class in a sensible way
and reports what is going on; if all looks well from this then the class is assumed
to work. This is admittedly not a particularly structured way of testing, but it
can be sufficient for simple classes.

The first stage is obviously to create an object, so in this program:

public static void main (String args[])
{
Reminders elvisJobs = new Reminders ();

}

The methods can be tested in any order, so we might as well start with 
the add method. Adding a couple of objects to the list and then displaying its
contents would be a good start:

System.out.println ("Adding Some Jobs...");
elvisJobs.addJob ("Quacking");
elvisJobs.addJob ("Cricket Practice");

elvisJobs.listJobs ();

Now to see if the method to remove an element works. Let’s remove the first
element and then observe results:

System.out.println ("Deleting \"Quacking\"...;");
if (elvisJobs.removeJob ("Quacking") ) {
System.out.println ("Removed!");

}
else {
System.out.println ("Not Found!");

}
elvisJobs.listJobs ();

This call also needs to handle, of course, the possibility that the element is not
found. We know that it should be, but if there was an error it might possibly not
be found. The next logical step is to see what happens if we try to remove an
element that is not on the list:

System.out.println ("Deleting \"Reading Poetry\" ...");
if (elvisJobs.removeJob ("Reading Poetry") ) {
System.out.println ("Removed!");

}
else {
System.out.println ("Not Found!");

}
elvisJobs.listJobs ();

Finally we need to make sure that the method to count the number of jobs
works correctly:

System.out.println ("There are currently " +
elvisJobs.countJobs ()
+ " jobs to do.");



Collections 257

The method for listing all the jobs has been tested already, so all that remains
now is to check the method that tells Elvis if he has any jobs to do:

if (elvisJobs.jobsToDo () ) {
System.out.println ("There are jobs to do.");

}
else {
System.out.println ("There are no jobs to do.");

}

Sometimes errors can be made in a program when the collection is empty, so
it would be a good idea to repeat these last two tests with any empty list. The
list is emptied:

System.out.println ("Deleting \"Cricket Practice\"...");
if (elvisJobs.removeJob ("Cricket Practice") ) {
System.out.println ("Removed!");

}
else {
System.out.println ("Not Found!");

}

and then the final two tests are repeated.
This simple method would then be run, and the programmer could examine

the results and see if they were as expected. Hopefully they would resemble:

Adding Some Jobs ...
Current Jobs:
Job #1: Quacking.
Job #2: Cricket Practice.
Deleting "Quacking"...
Removed!
Current Jobs:
Job #1: Cricket Practice.
Deleting "Reading Poetry"...
Not Found!
Current Jobs:
Job #1: Cricket Practice.
There are currently 1 jobs to do.
There are jobs to do.
Deleting "Cricket Practice"...
Removed!
There are no current jobs.
There are currently 0 jobs to do.
There are no jobs to do.

This is a very “rough and ready” approach to testing, and the grammar 
when there is only one job is inexcusable. Sometimes something a little more
structured is needed.

Example 3 – Testing jobs more thoroughly
Buddy tells Elvis that his method for testing is a step in the right direction, but is still
far from convinced. He shows Elvis the test plan that he has drawn up for the class, and
asks how that can be run.

One approach that Elvis could use to carry out Buddy’s test plan is obviously
to rewrite his current main method. This would work, but then Buddy might



258 How to program using Java

change the plan and Elvis would have to go through all the upheaval of chang-
ing his program again. Elvis is going to have to think of a better method.

There is indeed a better way to write this method. The approach is to write a
simple menu program that allows each of the methods to be called on an object.
This can then be used to carry out whatever test plan is required. The program
does not have to produce a dialogue that is especially neat since it will only be
used by a tester (who may well also be the programmer). It might show a menu
like this:

1. Add a Job
2. Delete a Job
3. List Current Jobs
4. Count Current Jobs
5. Jobs to do?
0. Exit

with each menu option corresponding to one method.
Programs like this take more time to write than the simple approach from the

last example, but all such programs for any class follow the same basic pattern.
In this case the program must first create an object in the same way as the last
attempt. This is manipulated in a menu controlled by a loop and a boolean:

Reminders elvisJobs = new Reminders ();

boolean finished = false;

do {
System.out.println ("1. Add a Job");
System.out.println ("2. Delete a Job");
System.out.println ("3. List Current Jobs");
System.out.println ("4. Count Current Jobs");
System.out.println ("5. Jobs to do?");
System.out.println ("0. Exit");
System.out.println ();
System.out.print ("Choice: ");
choice = Console.readInt ();

} while (!finished);

The choice entered by the user4 is then processed in a simple switch state-
ment. An if statement could be used, of course, but the switch is rather neater
in this case. Each part of the switch is straightforward even if the statement
itself is quite long.

switch (choice) {
case 1: System.out.print ("Enter new job: ");

elvisJobs.addJob (Console.readString () );
System.out.println ("Job Added!");
break;

case 2: System.out.print ("Enter job to delete: ");
if (elvisJobs.removeJob (Console.readString ())) {

4 It would, of course, be an extremely good idea to check this version of the method before
carrying on to worry about what the user had entered. There is very little point in trying to
process some input from the user without first checking that it’s as expected!



Collections 259

System.out.println ("Job Removed!");
}
else {
System.out.println ("No Such Job!");

}
break;

case 3: elvisJobs.listJobs ();
break;

case 4: if (elvisJobs.countJobs () == 1) {
System.out.println ("There is 1 job to do.");
}
else {
System.out.println ("There are " + 

elvisJobs.countJobs ()+ " jobs to do.");
}
break;

case 5: if (elvisJobs.jobsToDo () ) {
System.out.println ("There are jobs to do!");

}
else {
System.out.println ("There are no jobs to do!");

}
break;

case 0: finished = true;
break;

default: System.out.println ("Invalid Option!");
break;

}

Either of the two approaches described here can be used to test a class. The
choice between the two will usually come down to preference, or perhaps to the
details of the test plan. At least the grammar has been repaired in the second
version.

17.1 Explain the error(s) in the following code:

ArrayList a = new ArrayList (4);
Integer num = 2;
a.add (num);
System.out.println ("Value is " + a.get(0) );

17.2 Write a SortArray.java program which receives numbers from the
user via the keyboard, rather than hardwired into the code.

17.3 Write a SortArrayList.java program which works in much the 
same way.



260 How to program using Java

17.4 Add a priority attribute to Elvis’s class for his jobs (use an integer). 
Write a program that displays Elvis’s current most urgent job, defined as the job
with the highest priority. What happens if more than one job has the highest
priority?

By now, you should understand the differences between variables and collec-
tions of variables. You should understand why collections are useful, how and
why we use them, and should be able to choose arrays or ArrayLists depend-
ing on the situation. You should be able to apply the Bubblesort algorithm to
sort arrays and ArrayLists. You should also know why primitive variable
types cannot be added directly to an ArrayList, but that they can be wrapped
inside objects to do so.

And that is very nearly all there is to it. To finish off, the next chapter 
provides a case study that ties everything we’ve done together …



261



262 How to program using Java

This is nearly the end. You have now seen, and had the chance to practise, all
the Java that there is in this book. This chapter presents some reasonably long
programs that make use of all of this Java. It goes through the whole process of
developing a complete object-oriented program; it starts with the description 
of a problem and then goes through the process of designing and developing
suitable classes and then the programs that use them.

There have been many example programs in this book so far. All of them
have been intended to illustrate the particular new part of Java that was being
described in the current chapter. The programs in this chapter draw from all 
of the Java in the book. You should certainly be able to understand all these 
programs, and you should be able to write similar programs yourself.

After reading this chapter you should understand how a Java program is
written. You should know why the classes are designed and developed first 
and how the programs that make use of the classes are then designed and
developed. You will also have seen once again some of the advantages of object-
oriented programming and code reuse.

This chapter will also in passing highlight some of the areas that have not
been covered. These are for you to find out about later!

It is well known that all the ducks on Mr Martinmere’s reserve have become
keen cricketers. As time has gone on there have been more and more matches
and the matches have been more and more keenly contested. Buddy (whose
spectacles have hindered his progress as a cricketer) has been put in charge of
keeping various statistics; he has been doing this to date by keeping paper-
based records.

A challenge has now been received from the ducks of a neighbouring reserve.
The ducks have decided to use Buddy’s statistics to help them select the best
team. It soon becomes apparent that the paper system is not storing all the



Case study 263

information required, and so it is decided that a computerised system will be
needed.

At the moment Buddy is simply storing all the scores from all the matches.
When the ducks are interested in more complex statistics, such as which duck
is averaging the most runs each match, he is working this out by hand.1 This is
complex and tedious so Buddy is more than willing to agree to a computerised
system.

The approach
The immediate need here is to calculate various statistics, but it seems more
than likely that the information used may also be of wider interest. There is
more than one problem here, even if the first one is the most pressing and 
the others have not been properly specified yet. The object-oriented approach
to a set of problems such as this is obviously to develop the classes that the 
programs will need first and then to develop the programs themselves. The
classes will be used in many programs, a fine example of code reuse.

Some further analysis of the requirements is needed. The first step is to iden-
tify the object types that are needed and the attributes and methods of each. It
should be reasonably easy to design and implement some suitable classes from
the results of this analysis.

It would also be possible, of course, to leap straight in and develop a single
program that would solve the current problem. This is possible, and it is quite
likely that a working program could be developed sooner, but in the long term
there would be more effort required when more programs were needed. In any
case, we all know that developing any part of a program without thoroughly
understanding the requirements is a sure recipe for problems in the future.

The requirements
The ducks need to identify their best players. Buddy can currently supply the
following information for each match they have played:

● The names of the two teams.
● The names of the ducks in each team.
● The number of runs scored by each duck.
● The number of overs bowled by each duck.
● The number of runs conceded by each duck when bowling.
● The number of wickets taken by each duck.

There are many possible measures of cricketing prowess that can be used.
Some are incredibly complicated, but the ducks are quite happy to make do
with something simpler. They will be content with being able to calculate three 
values for each duck:

● The batting average – the number of runs scored on average in each 
match.

1 Er, wing?



264 How to program using Java

● The bowling average – the number of runs conceded for each wicket 
taken.

● The run rate – the average number of runs conceded in each over.

Buddy decides that some sort of database system is needed. He wants to be 
able to enter the name and score of each duck and would then like the system
to calculate the various statistics. He can then collect these and pass them to the
ducks’ selection committee.

Armed with all this information the first step is to identify and design the
classes that will be needed.

The classes
This is not as simple as it might seem. The obvious candidate would seem to 
be to have a class where each object would represent one match. This would
correspond closely with the information that is currently collected, and Buddy
would enter the details of each match. A program could then be written to
process a collection of these objects to produce the statistics required.

This is possible, and it would work. But if we examine the requirements more
closely it may well not be the best way. The task of finding the total number of
runs scored by a duck, for example, would involve examining the scores from
each match to see whether or not the duck played and keeping some sort of
running total. Again, this is possible and it would work, but it is starting to
seem complicated.

A closer look at the requirements shows that all the results that have been
asked for are details (attributes, even) of the duck. There is no need to display
anything that might be an attribute of a match, such as the name of the winning
team, for example. The total number of runs scored could simply be kept as an
attribute of a duck, something that seems much neater and simpler.

The program that follows could have been written using either of these
approaches. We have chosen one particular route, but the alternative is in 
many ways equally valid. Object-oriented design is sometimes like this; if there
was a class already available to implement one possibility we might well have
chosen it!

The class will represent ducks, and we will call it Duck. It could, of course,
equally well been called Cricketer or even CricketingDuck; it all comes
down to preference as usual, and we tend to prefer short names to save on 
typing! This is the only class in this problem.

The next stage is to identify the attributes. There are four that we can see
immediately from the requirements:

● Name
● Batting average
● Bowling average
● Run rate

We obviously need to store each duck’s name so that they can be identified
(and we will assume that each duck has a different name). It would be possible
to store each of the last three of these values as attributes, but again there is 
a decision to be made. These are final values, based on others. Suppose that we
knew a duck’s batting average and had a new score; to update the average 



Case study 265

we need to know the duck’s total number of runs, a number that we do not 
currently have.

These three numbers are actually derived from other attributes, and it is these
values that we must store. To recap how these values are calculated:

● Batting average is the total number of runs scored divided by the number of
innings.2

● Bowling average is the total number of runs conceded while bowling 
divided by the number of wickets taken.3

● Run rate is the number of runs conceded divided by the number of overs
bowled.

So we need to store the values that are needed to calculate the averages; these
are all integers. There is no need to store the averages themselves, of course.
They can simply be calculated as and when they are needed. Finally, we need
to store the duck’s name (a string). Buddy also stores the name of the duck’s
team. While there is no immediate need for this information, we may as well
add it in since it could come in useful in the future. We will assume that ducks
do not change teams.

With the attributes identified we need to move on to the methods. This is not
too complicated. Obviously each attribute will need a selector and a mutator4

but appropriate methods will need to be added so that the required program
can be implemented. Also, it is probably a good idea to add methods that will
become useful in future programs, even if they are not needed in the particular
program that is required first.

When identifying the methods it is important to separate them from the func-
tions that will be needed in the programs. A method is attached to a single
instance of a class while functions in programs may well process collections of
instances. For example, we might well expect that at some point Buddy is going
to want to sort the ducks into some order. A sorting function will obviously be
needed to do this but this is part of the program and not part of the class; it will
process a collection of ducks. The only methods needed for this sorting process
will be ones to return the required averages of an individual duck since this is
used as the basis for the sort.

Since the averages are clearly of great interest it also makes sense to imple-
ment a method to output them all in some neat format. So that this can be used
in any program this should not actually do the output itself; rather it should
return a suitable string that can be processed in any way required.

Defining the Duck class
With the attributes and methods identified, starting to implement the Duck
class is straightforward. The attributes will all be declared as private:

// Personal Information
private String name;
private String team;

2 Cricket buffs will realise that we are ignoring the complexities of “not out” innings; 
averages are usually calculated using only completed innings (that is innings when the
player was out).

3 Again, we are going to assume that all overs are completed.
4 It is possible that the programs won’t need all of these, but there are sufficiently few 

attributes that they might as well all have a selector and a mutator.



266 How to program using Java

// Bowling Figures
private int overs;
private int wickets;
private int runsConceded;

// Batting Figures
private int innings;
private int runsScored;

Now for the methods. There will obviously need to be a constructor, and 
a decision needs to be made on whether to set any initial values. It seems 
reasonable to see all the numeric values to 0, but there are no obvious initial 
values for the strings. The constructor is therefore just a collection of assign-
ment statements:

public Duck ()
{
overs = 0;
wickets = 0;
runsConceded = 0;
innings = 0;
runsScored = 0;

}

The selectors come next. The pattern for these is very familiar by now, so here
is just one example:

public void setName (String newName)
{
name = newName;

}

The mutators for the attributes are similarly familiar. For example:

public int getOvers ()
{
return overs;

}

There will be one selector and one mutator for each of the attributes; they are
included in the complete listing at the end of this section.

Now we come to the statistics that we plan to derive from these values. 
There is a lot of division here, so we will need to be on the look out for 
attempted division by 0 errors. The values involved are also all integers, so we
will also need to take care to convert the resulting averages to floating-point
values.

The bowling average is the numbers of runs conceded divided by the 
number of wickets taken:

runsConceded / wickets

These values are both integers, so a cast is needed to make sure that the result
is returned as a floating-point value. The simplest way to do this is to cast the
runsConceded value to a double:

(double) runsConceded / wickets

Nearly there. The remaining problem is that an error would now occur if the
value of wickets was 0. Let’s look at the complete method so far to see why



Case study 267

this is a potential problem:

public double getBowlingAverage ()

{
return ( (double) runsConceded) / wickets;

}

This method can only return a number. We don’t want to start displaying error
messages here since we don’t know any details of how the programs using the
method might be written; it is quite possible that the programs will trap the
error before calling the method. The simplest solution, and the one that most
programmers would adopt when faced with problems like this, is to return a
value that is clearly an error. The program using the method can examine the
value returned if it needs to detect the error. Here an average of �1 is clearly an
error, so we will return that.5 The complete method now becomes:

public double getBowlingAverage ()
{
if (wickets == 0) {
return -1.0;

}
else {
return ( (double) runsConceded) / wickets;

}
}

The other two methods required for the derived values follow exactly the
same pattern. They both need the cast, and they both need to handle the possi-
bility of a division by 0. They are included in the complete listing.

Finally, there is the method for output, or rather the method that produces a
string that could be output. This does not stop a programmer implementing
another way of doing this in a program, of course; the values can still be
accessed directly via the selectors. The point of this method is to provide generic
output that can be used in many situations.

The precise way in which the values were displayed is not especially impor-
tant, but the following would produce something reasonably neat:

public String getFigures ()
{
String temp = " ";

temp += "***** Statistics for " + name
+ " (of team " + team + ") *****\n\n";

temp += " Total innings batted : " + innings + "\n";
temp += " Total runs scored : " + runsScored + "\n";
temp += " Batting average : " + getBattingAverage() + "\n\n";

temp += " Total overs bowled : " + overs + "\n";
temp += " Wickets taken : " + wickets + "\n";
temp += " Runs conceded : " + runsConceded + "\n";
temp += " Bowling Average : " + getBowlingAverage () + "\n";
temp += " Run Rate : " + getRunRate () + "\n";

for (int i = 0; i < name.length (); i ++) {
temp += "*";

}

5 Actually, we will return �1.0 since a floating-point value is needed.



for (int i = 0; i < team.length (); i ++ ) {
temp += "*";

}

temp += "**************";
return temp;

}

The two loops in this code are worth a second look. If you think about it
they’re making sure that the top row (including the duck’s name and team
name surrounded by stars) is the same length as the bottom.

Finally, you might remember that it is customary for a Java class to have 
a method called toString that does pretty much what this getFigures
method achieves. We might as well add one in; it can just call getFigures:

public String toString ()
{
return getFigures ();

}

With the addition of a suitable header block of comments we now have the full
implementation of the class:

/* Duck.java – a class representing a cricketing duck.

Author : AMJ
Date : 17th July 2003
Tested on : Linux (Red Hat 7.3), JDK 1.4.1

*/

public class Duck
{
// Personal information
private String name;
private String team;

/* Bowling figures – we are bothered about :

runsConceded / wickets (bowling average)
runsConceded / overs (run rate)

*/

private int overs;
private int wickets;
private int runsConceded;

/* Batting figures – we are bothered about :
runsScored / innings (batting average)

*/

private int innings;
private int runsScored;

public Duck () // initialise all attributes to 0
{
overs = 0;
wickets = 0;
runsConceded = 0;
innings = 0;
runsScored = 0;

}

268 How to program using Java



Case study 269

public void setName (String n)
{
name = n;

}

public void setTeam (String t)
{
team = t;

}

public void setOvers (int o)
{
overs = o;

}

public void setWickets (int w)
{
wickets = w;

}

public void setRunsConceded (int rc)
{
runsConceded = rc;

}

public void setInnings (int i)
{
innings = i;

}

public void setRunsScored (int rs)
{
runsScored = rs;

}

// Standard accessor methods

public String getName ()
{
return name;

}

public String getTeam ()
{
return team;

}

public int getOvers ()
{
return overs;

}

public int getWickets ()
{
return wickets;

}

public int getRunsConceded ()
{
return runsConceded;

}

public int getInnings ()
{
return innings;

}



270 How to program using Java

public int getRunsScored ()
{
return runsScored;

}

// Some methods to keep the statisticians happy

public double getBowlingAverage ()
{
if (wickets == 0) {
return -1.0;

}
else {
return ( (double) runsConceded) / wickets;

}
}

public double getRunRate ()
{
if (overs == 0) {
return -1.0;

}
else {
return ( (double) runsConceded) / overs;

}
}

public double getBattingAverage ()
{
if (innings == 0) {
return -1.0;

}
else {
return ( (double) runsScored) / innings;

}
}

public String getFigures ()

{
String temp = " ";

temp += "***** Statistics for " + name
+ " (of team " + team + ") *****\n\n";

temp += " Total innings batted : " + innings + "\n";
temp += " Total runs scored : " + runsScored + "\n";
temp += " Batting average : " + getBattingAverage()

+ "\n\n";

temp += " Total overs bowled : " + overs + "\n";
temp += " Wickets taken : " + wickets + "\n";
temp += " Runs conceded : " + runsConceded + "\n";
temp += " Bowling Average : " + getBowlingAverage ()

+ "\n";
temp += " Run Rate : " + getRunRate () + "\n";
for (int i = 0; i < name.length (); i ++ ) {

temp += "*";
}

for (int i = 0; i < team.length (); i ++ ) {
temp += "*";

}



Case study 271

temp + = "****************";
return temp;

}

public String toString ()
{
return getFigures ();

}
}

Testing the classes
The next stage in the development is to write a small driver program to test the
class. This program should test all the methods (paying particular attention to
the methods dealing with the derived values) so that the programmers can be
sure that they work correctly. We saw a similar process with Elvis’s reminders
in the last chapter.

Driver programs may simply call the methods of a class one after another,
reporting the results, or they may be more complex. A driver for a sophisticat-
ed class would probably provide some sort of menu that could be used, and
there is more about driver programs and testing in the next chapter. For the
moment, we’ll include a short main method for some basic testing.

This method will just declare a Duck object, use the mutators to set some 
suitable values for the attributes, and then use the toString method to dis-
play the results. The expected results could, of course, be calculated by hand
first. The selectors will be tested by confirming the values entered by the user.
Since there is now going to be some input, the class will have to include the
usual Console library.

The method is quite simple, but would allow for some basic testing:

public static void main (String args[])
{

Duck aDuck = new Duck ();

System.out.print ("Name: ");
aDuck.setName (Console.readString () );
System.out.println ("Name set to \" " + aDuck.getName ()

+ "\" ... ");

System.out.print ("Team: ");
aDuck.setTeam (Console.readString () );
System.out.println ("Team set to \" " + aDuck.getTeam ()

+ "\" ... ");

System.out.print ("Innings: ");
aDuck.setInnings (Console.readInt () );
System.out.println ("Innings set to \" " + aDuck.getInnings ()

+ "\" ... ");

System.out.print ("Runs Scored: ");
aDuck.setRunsScored (Console.readInt () );
System.out.println ("Runs Scored set to \" "

+ aDuck.getRunsScored () + "\" ... ");

System.out.print ("Wickets Taken: ");
aDuck.setWickets (Console.readInt () );
System.out.println ("Wickets set to \" " + aDuck.getWickets ()

+ "\" ... ");



272 How to program using Java

System.out.print ("Runs Conceded: ");
aDuck.setRunsConceded (Console.readInt () );
System.out.println ("Runs Conceded set to \""

+ aDuck.getRunsConceded () + "\" ... ");

System.out.print ("Overs Bowled: ");
aDuck.setOvers (Console.readInt () );
System.out.println ("Overs Bowled set to \" " + aDuck.getOvers ()

+ "\" ... ");

System.out.println (aDuck.toString () );

}

The output from the program is simple as it is intended only for testing, but
it does give us some basic confidence that the class works as expected, at least
when valid data is provided.

tetley% java Duck
Name: Elvis
Name set to "Elvis" ...
Team: Quackshire
Team set to "Quackshire" ...
Innings: 10
Innings set to "10" ...
Runs Scored: 170
Runs Scored set to "170" ...
Wickets Taken: 20
Wickets set to "20" ...
Runs Conceded: 200
Runs Conceded set to "200" ...
Overs Bowled: 10
Overs Bowled set to "10" ...
***** Statistics for Elvis (of team Quackshire) *****

Total innings batted : 10
Total runs scored : 170
Batting average : 17.0
Total overs bowled : 10
Wickets taken : 20
Runs conceded : 200
Bowling Average : 10.0
Run Rate : 20.0
******************************************************

This is, of course, only a basic test. It would have to be repeated with a proper
test plan before we had any confidence that the class worked as expected.

The program
With the specification and implementation of the Duck class in hand, we must
now turn our attention to the program which will use instances of this Duck
class to store data about our cricketing ducks.

As we intend to store data on more than one duck, it makes sense for the pro-
gram to maintain some form of collection of Duck objects. The question remains
as to which sort of collection to use, but this is an easy decision. As the user 
can add and delete ducks from the collection at will, an array would be too
inflexible and inefficient for our needs, so an ArrayList is the ideal choice.



Case study 273

Examining the program specification in more detail, we can split the program
into several smaller problem areas:

● Adding a new duck to the list.
● Removing an existing duck from the list.
● Displaying statistics for an individual duck.
● Displaying statistics for the entire list of ducks.
● Displaying a list of teams.
● Modifying the statistics for a duck in the list.

It is worthwhile developing a method (or several methods) to perform each
task independently of the other tasks; this way they can be tested in isolation
before adding any complications that may arise from using them together. As it
happens we saw methods very similar to those needed here in the examples in
the last chapter.

The list can be used by any of the methods, so this will be created in the
constructor. The new class is going to amount to a database of Ducks, so
DuckDatabase is a reasonable name.

public class DuckDatabase
{
private ArrayList ducks;

public DuckDatabase ()
{
ducks = new ArrayList ();

}
}

Adding a new duck to the list
As we have seen in the previous chapter, it is easy to add a new item to an
ArrayList – the add method takes an object as a parameter, and adds this
object to the list, increasing the size of the list by one.

Creation of the list is straightforward:
As each object needs to be initialised first, we need to declare and initialise 

a Duck object, then add this to the ArrayList:

Duck d = new Duck ();
ducks.add (d);

This introduces a problem straight away – the Duck object we have created has
absolutely no distinguishing attribute values, so there is no (easy) way to keep
track of it within the list. As every duck on the reserve has a unique name, it
makes sense to use the value of the name attribute as the search key.6 Therefore
we must at least set the value of this attribute before adding the object to the list.
The Duck class provides mutator methods for all its attributes, so we simply
use the one to change the value of the name attribute (setName).

Using the Console class we can receive user input, so we can prompt the
user to enter a suitable name. There is no need to use a temporary variable to

6 That is, the attribute we can search for and be confident of finding no more than one duck
with that value for that attribute. This is also known as a primary key when discussed in
the field of databases.



274 How to program using Java

store the name as the method call can be used as a parameter:

System.out.print ("Enter duck's name : ");
d.setName (Console.readString () );
ducks.add (d);

Since every duck should be a member of a team, it would make sense to set the
value of the team attribute at this stage as well. This way, it is impossible for any
of the Duck objects to end up in the list with an empty team attribute. This is
achieved similarly to the way we set the duck’s name, via the setTeam method.

It would be useful to put the functionality we have defined so far into a 
suitably named method (addDuck, say). The method does not require any
parameters, as the Duck object is created within the method body, and the user
is prompted to input the name and team values. In addition, no value need be
returned, as the result of calling the method is that the ArrayList is updated.

So, the method will end up looking like this:

public void addDuck ()
{
Duck d = new Duck ();

System.out.print ("Enter duck's name: ");
d.setName (Console.readString () );
System.out.print ("Enter duck's team: ");
d.setTeam (Console.readString () );

ducks.add (d);

}

Deleting a duck from the list
Again, this is fairly straightforward, as the ArrayList class provides the
remove method to delete an element. The only major complication is in find-
ing the Duck object we wish to delete.

As we said earlier, every duck on the reserve has a unique name, so we can
search the list for a Duck object whose name attribute matches that name. The
Duck class has a getName method which returns the value of the name attrib-
ute (a String). So, in pseudocode, all we need to do is:

FOR EACH DUCK IN THE LIST
CALL THE getName METHOD

IF THIS MATCHES THE SEARCH TERM, DELETE THIS DUCK

This seems simple – now to implement it!
As we go through the list of ducks, we need to initialise a temporary Duck

object so we can call the getName method. This is done by calling the get
method of the ArrayList class, and performing a cast on the object returned
(as we saw in the previous chapter).

A final nicety would be to stop searching the list if we have found a match
(after all, if there’s only going to be one duck called Richie, there’s no point
searching for another after we’ve found a match!). This could be achieved 
in several ways, from breaking forcibly out of the loop, to setting some flag
when the match is found and checking for this flag with every iteration.
However, in this case the neatest solution would be to simply return from the
method when a match is found.

The method needs to take a parameter representing the name of the duck
whose entry we want to delete. The return type could be void, as we don’t



Case study 275

actually need to return a value. However, it can be useful for a method that
might potentially fail in its task to return a boolean, denoting whether or not
the method performed its task successfully. The code which calls the method
can then handle the situation more robustly. In this case, the method should
return true if the name was found in the list, and false if not (the calling code
could then, for example, print an error message). This all sounds terribly com-
plicated, but it’s actually just the same as searching through Elvis’s list of jobs
in the last chapter.

Here is the complete method:

public boolean removeDuck (String name)
{
Duck tmpDuck; // create once here, not repeatedly inside loop

for (int i = 0; i<ducks.size (); i++) {
tmpDuck = (Duck)ducks.get (i);

if (tmpDuck.getName ().equals (name) ) {
ducks.remove (i);
return true;
}

}

return false; // only reached if no match is found
}

Displaying statistics for a single duck
Now we need to find the statistics of a particular duck. The removeDuck
method involved searching through the list to find a certain duck, and this
method will require a similar approach. The Duck class provides a
getFigures method, which returns a String representation of that duck’s
bowling and batting figures. In pseudocode, the task is:

FOR EACH DUCK IN THE LIST
CALL THE getName METHOD

IF THIS MATCHES THE SEARCH TERM, PRINT DUCK’S STATISTICS

We can re-use the removeDuck method for much of the code for our
getFigures method. The code to search the list is exactly the same, the only
change is in the method we call when we find a match as this time we will call
the getFigures method of the Duck class.

public boolean getFigures (String name)
{

Duck tmpDuck; // create once here, not repeatedly inside loop

for (int i = 0; i<ducks.size (); i++) {
tmpDuck = (Duck)ducks.get (i);

if (tmpDuck.getName ().equals (name) ) {
System.out.print (tmpDuck.getFigures () );
return true;

}
}

return false; // only reached if no match is found

}



276 How to program using Java

Displaying statistics for the entire list of ducks
And now for all the ducks and finding the best cricketers. This method is slightly
more complicated than either of the previous two in that we have no search
term to match. Instead, we need to traverse the entire list and decide what the
best figure is for each of the performance attributes (runs scored, runs conced-
ed, wickets taken, run rate, and bowling average). In addition to recording
these figures, we will also need to record the name of the duck holding each of
the best figures found so far.

We will need a for loop and temporary Duck object as before. We will also
need variables to hold the current best figures and the names of the correspon-
ding ducks. Finally, we will need to print out the figures and return from the
method.

Now, we will need to establish how to work out which is the best figure for,
say, runs scored. In pseudocode, we could do:

highestRuns = -1 // DELIBERATELY LOW VALUE
FOR EACH DUCK IN LIST
IF DUCK’S TOTAL RUNS SCORED IS HIGHER THAN highestRuns
SET highestRuns TO DUCK’S TOTAL RUNS SCORED

We start by setting a variable (highestRuns) to a very low value. We then
loop through all the ducks and whenever a higher figure is encountered, the
variable is increased to match this new highest value. When this loop termi-
nates, the highestRuns variable is guaranteed to hold the best figure.

In actual fact, we also need to record the name of the proud batsduck:

highestRuns = -1
batsduck = " "
FOR EACH DUCK IN LIST
IF DUCK’S TOTAL RUNS SCORED IS HIGHER THAN highestRuns
SET highestRuns TO DUCK’S TOTAL RUNS SCORED
SET batsduck TO DUCK’S NAME

This procedure can be repeated separately for each of the figures required.
However, for efficiency reasons, it would make sense to perform all the calcu-
lations within the same for loop, to avoid having to go through the list for each
statistic.

We cycle through the loop in exactly the same way as before, calling the 
get method of the ArrayList class and casting the returned object to type
Duck. We then compare each of the duck’s figures in turn with the current
“bests”, updating the figures and names where necessary.

This time the method does not need to return any value, as it will print its
results to the screen. Also, it need not take any arguments, as the name of the
list to be searched is known in advance. So the method will look like this:

public void getStatistics ()
{
int runsScored = 0, wickets = 0;
double battingAvg = 0.0, bowlingAvg = 0.0
double runRate = 99999999.0; // we want the *lowest* here

String runsScoredName = " ", wicketsName = " ",
battingAvgName = " ", bowlingAvgName = " ",
runRateName = " ";



Case study 277

Duck tmpDuck;

for (int i = 0; i<ducks.size (); i++) {
tmpDuck = (Duck)ducks.get (i);

if (tmpDuck.getRunsScored () > runsScored) {
runsScored = tmpDuck.getRunsScored ();
runsScoredName = tmpDuck.getName ();

}
if (tmpDuck.getWickets () > wickets) {

wickets = tmpDuck.getWickets ();
wicketsName = tmpDuck.getName ();

}
if (tmpDuck.getBattingAverage () > battingAvg) {

battingAvg = tmpDuck.getBattingAverage ();
battingAvgName = tmpDuck.getName ();

}
if (tmpDuck.getBowlingAverage () > bowlingAvg) {

bowlingAvg = tmpDuck.getBowlingAverage ();
bowlingAvgName = tmpDuck.getName ();

}
if (tmpDuck.getRunRate () < runRate) {

runRate = tmpDuck.getRunRate ();
runRateName = tmpDuck.getName ();

}
}

System.out.println ("********");
System.out.println (" Most runs scored : " + runsScoredName

+ " (" + runsScored + ") ");
System.out.println (" Best batting average : " + battingAvgName

+ " (" + battingAvg + ") ");
System.out.println (" ");

System.out.println (" Most wickets taken : " + wicketsName
+ " (" + wickets + ") ");

System.out.println (" Best bowling average : " + bowlingAvgName
+ " (" + bowlingAvg + ")");

System.out.println (" Best run rate : " + runRateName
+ " (" + runRate + ") ");

System.out.println ("********\n");

}

Displaying a list of teams
The requirement for this method is that we obtain a list of unique team names.
Again, we will need to go through (properly called iterate) the ArrayList, this
time checking the team attributes, and storing a new name every time one is
encountered.

Iterating through the list should need no explanation by now! Calling the
getTeam method of the Duck class and checking the return value is a process
found in most of the methods so far, and is indeed an example of a very com-
mon process. The complication this time comes in how we store the return
value. It would be grossly inefficient to create a large number of String
variables to store the team names (not to mention that this method is prone to
errors – you can create 1000 variables, but it’s almost guaranteed that one day,
someone somewhere will want to store 1001 names!). There is no reliable way



278 How to program using Java

we can know in advance how many teams there are,7 so this situation calls for
a collection. Not just any old collection, though – a variable-length collection.
You may have realised that this means we need another ArrayList!

The pseudocode for this method would be something like:

CREATE EMPTY LIST list
FOR EACH DUCK IN DUCK LIST
IF DUCK'S TEAM IS NOT PRESENT IN list
ADD DUCK'S TEAM TO LIST

FOR EACH TEAM IN list
PRINT TEAM

The ArrayList for the teams is created in the same way as the one for Ducks:

ArrayList teams = new ArrayList ();

Elements are added in the same way as in the addDuck method:

teams.add (aTeamName);

We also need to check whether the team list already contains a certain name.
Thankfully, we met the contains method of the ArrayList class in the last
chapter:

if (teams.contains (anotherName) ) {
// do something

}

This method need not take any arguments, as again the list it operates on is
known beforehand. Again the return type is void, as the method will display
its results. In a different scenario, it could well return a String (or an array or
ArrayList of Strings) containing the team names.

Tying all this together, we have the printTeams method:

public void printTeams ()
{
ArrayList teams = new ArrayList ();
Duck tmpDuck;

for (int i = 0; i<ducks.size (); i++) {
tmpDuck = (Duck)ducks.get (i); // second nature by now?

if (!teams.contains (tmpDuck.getTeam () ) ) {
// add new team only if not present already
teams.add (tmpDuck.getTeam () );

}
}

if (teams.size () == 0) {
System.out.println ("No teams found.");

}
else {
System.out.println ("**********************************");
System.out.println ("The following teams were found :\n");

7 Actually, it is possible to know the upper bound for this figure – a group of n cricketing
ducks represents, at most, n teams.



Case study 279

for (int i = 0; i<teams.size (); i++) {
System.out.println ( (String)teams.get (i) );

}

System.out.println ("**********************************");
}

}

Modifying the statistics for a duck in the list
The Duck class contains seven modifiable attributes – name, team, runs scored,
innings batted, overs bowled, runs conceded, and wickets taken. It is unlikely
that a duck will ever change its name, so we’ll discard the need for our program
to handle this. If we allow that a duck might some day change its team, this still
leaves us with six ways to modify a Duck object.

Now, we could write individual methods to modify each of the attributes, but
in many ways it is just as easy to write a single modifyDuck method to inter-
face with the mutator methods of the Duck class.

Once again, we will need to iterate over the list of Ducks and attempt to
match a search string, so this code at least can be copied from one of the earlier
methods. When the correct duck is found, we need to establish which attribute
to update, and what its updated value is. This should be simple enough as we
have already seen simple menu systems, and it would not be too much effort to
implement one for our purposes here:

PRINT MENU AND PROMPT USER FOR CHOICE
IF FIRST OPTION IS CHOSEN
<do something>

ELSE IF SECOND CHOSEN
<do something else>

.

.
ELSE QUIT

We can use System.out.print (or println) for outputting the menu. It is
very easy to be creative with the output, in order to produce a neat, aesthetically
pleasing interface and we will do so with asterisks to create a box for the menu.

To read the user input, we will use the Console class again. This time, 
it would make sense to use the readChar method, as we would expect such 
a menu to prompt by initial letter (for example, “press W to update figure for 
wickets”). Since char is an ordinal variable type – it can hold one of a finite 
number of possible values – we can use a single switch statement to control
the menu logic:

char choice = Console.readChar ();

switch (choice) {
case 'w':
case 'W':

// update wickets
break;

case 'r':
case 'R':

// update runs scored
break;

// And so on
}



280 How to program using Java

At first glance, it is tempting to think that each option on the menu leads to
nothing more than “enter a new value for X”, followed by updating attribute X.
However, this does not account for any error checking at all. It is almost 
trivial to check for common errors, such as the new figure being impossible (the
number of runs scored can never decrease, for example). Also, if the statistic is
undefined, the method will return �1 and while we could handle this case
separately, we will leave this as an exercise at the end of the chapter!

So, taking the runs scored as an example, we might expect to see:

case 'r':
case 'R':

System.out.println ("Current figure is" 
+ duck.getRunsScored () + ".");

System.out.print ("Enter new figure : ");
int tmpInt = Console.readInt ();
if(tmpInt <= duck.getRunsScored () ) {

duck.setRunsScored (tmpInt);
}
else {
System.err.println ("ERROR – new figure lower than"

+ "old one!");
}
break;

We would expect a similar block of code for each menu option (to save space,
we’ll leave them until the end of the section!). This would ideally be included
inside a loop which prompted repeatedly until told to quit (since more often
than not, we will want to update multiple attributes for a single duck). The loop
would execute at least once, so a do . . .while loop is the correct choice:

do {
// print menu
// switch statement

} while (quit option not chosen);

As with all the other methods involving a search for a specific duck, this
method returns a boolean value – true if the duck is found, false otherwise –
and takes the name to search for as an argument.

Another touch to add here would be to send error messages to a different
location than ordinary output. This would be useful if, for example, you want-
ed to print normal output to the screen as usual, but record error messages in a
file. The syntax to do this is incredibly similar to what we have already seen;
instead of:

System.out.print (message);

we use

System.err.print (message);

By default, System.out (the standard output stream) and System.err (the
error output stream) both display their output on the command line, but in
more advanced Java programs (well beyond the scope of this book!), it is pos-
sible to redirect one or both. Therefore splitting the output in this way is a good
habit to get into.



Case study 281

The final code for this method is:

public boolean modifyDuck (String name)
{
Duck tmpDuck = null;
char choice = ' ';
int tmpInt = -1;
boolean foundDuck = false;
for (int i = 0; i<ducks.size(); i++) {
tmpDuck = (Duck)ducks.get(i);

if (tmpDuck.getName ().equals (name) ) {
foundDuck = true;
break;

}
}

if (!foundDuck) {
return false;

}

do {
System.out.println (" ");
System.out.println ("****************************");
System.out.println ("* T – team *");
System.out.println ("* *");
System.out.println ("* S – runs scored *");
System.out.println ("* I – innings batted *");
System.out.println ("* *");
System.out.println ("* C – runs conceded *");
System.out.println ("* O – overs bowled *");
System.out.println ("* W – wickets taken *");
System.out.println ("* *");
System.out.println ("* Q – return to main menu *");
System.out.println ("****************************");
System.out.println (" ");
System.out.print ("Enter choice : ");
choice = Console.readChar ();

switch (choice) {
case 'c':
case 'C':

System.out.print ("Current figure is "
+ tmpDuck.getRunsConceded ()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();

if (tmpInt > tmpDuck.getRunsConceded () ) {
tmpDuck.setRunsConceded (tmpInt);

}
else {

System.err.println ("ERROR – new figure lower "
+ "than old one!");

}
break;

case 'i':
case 'I':

System.out.print ("Current figure is "
+ tmpDuck.getInnings ()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();



282 How to program using Java

if (tmpInt > tmpDuck.getInnings () ) {
tmpDuck.setInnings (tmpInt);

}
else {
System.err.println ("ERROR – new figure lower "

+ "than old one!");
}
break;

case 'o':
case 'O':

System.out.print ("Current figure is "
+ tmpDuck.getOvers ()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();

if (tmpInt > tmpDuck.getOvers () ) {
tmpDuck.setOvers (tmpInt);

}
else {
System.err.println ("ERROR – new figure lower "

+ "than old one!");
}
break;

case 's':
case 'S':

System.out.print ("Current figure is "
+ tmpDuck.getRunsScored ()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();

if (tmpInt > tmpDuck.getRunsScored () ) {
tmpDuck.setRunsScored (tmpInt);

}
else {
System.err.println ("ERROR – new figure lower "

+ "than old one!");
}
break;

case 't':
case 'T':

System.out.print ("Current team is "
+ tmpDuck.getTeam ()
+ ". Enter new team : ");

String tmpString = Console.readString ();

if (!tmpString.equals(tmpDuck.getTeam () ) ) {
tmpDuck.setTeam (tmpString);

}
else {
System.err.println ("ERROR – no change!");

}
break;

case 'w':
case 'W':

System.out.print ("Current figure is "
+ tmpDuck.getWickets()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();



Case study 283

if (tmpInt > tmpDuck.getWickets () ) {
tmpDuck.setWickets (tmpInt);

}
else {

System.err.println ("ERROR – new figure lower "
+ "than old one!");

}
break;

case 'q':
case 'Q':

break;

default:
System.err.println (choice + " was not an option!");
break;

}
} while (choice != 'q' && choice != 'Q');

return true; // only executed if duck was found initially
}

The checks in this code are all quite simple, but it is noticeable that the great
majority of the program is concerned just with checking the values that have
been entered.

Bolting it all together
Now we have a collection of methods which will manipulate our list of ducks
in a variety of ways, according to the program specification. However, our code
so far is just that – a collection of methods. We still do not have a working
program that solves a problem.

The first thing to determine with any program is how to handle its command
line arguments, but this is not a problem here, as the program relies solely on
interactivity. As this is the case, we need to think about user-friendliness, and that
means designing another menu system to guide the user around our program.

We need a list of options; one for each of the tasks we’ve discussed, plus the
ubiquitous “press Q to quit”. We also need to incorporate some kind of format-
ted output, to make the menu system easier on the eye. In fact, it is easy enough
to use asterisks as we did for the previous menu. The architecture of this menu
system will be almost identical to the one for modifyDuck with the only
changes being in the output, and the choice of method for each option. We still
have a variable to store the user’s choice of option, and a switch statement to
control the program according to this option.

We could simply implement this menu system in the main method of the
program. However, this causes problems if we ever wish to use this functional-
ity as part of another, larger program (say, if a well-known sports broadcaster
decided to show coverage of the Waterfowl Cricket Cup, and wanted to use
such a database alongside the rest of their fancy graphics). Therefore we will
implement this “main” menu in a separate method (named run), and simply
call this method from within main.

public void run ()
{
char choice = ' ';
String input = " "; // more efficient to declare this once



do {
System.out.println (" ");
System.out.println ("******* MAIN MENU *********");
System.out.println ("* *");
System.out.println ("* A – Add Duck *");
System.out.println ("* D – Delete Duck *");
System.out.println ("* *");
System.out.println ("* M – Modify Duck *");
System.out.println ("* F – Duck Figures *");
System.out.println ("* *");
System.out.println ("* S – Overall Statistics *");
System.out.println ("* T – Print teams *");
System.out.println ("* *");
System.out.println ("* Q – Quit *");
System.out.println ("***************************");
System.out.println (" ");
System.out.print ("Enter choice : ");
choice = Console.readChar ();

switch (choice) {
case 'q':
case 'Q':

break;

case 'a':
case 'A':

addDuck ();
break;

case 'd':
case 'D':

System.out.print ("Enter duck's name : ");
input = Console.readString ();

if (!removeDuck (input) ) {
System.err.println ("*** ERROR – No such 

duck" + " was found! ***\n");
}
break;

case 'm':
case 'M':

System.out.print ("Enter duck's name : ");
input = Console.readString ();

if (!modifyDuck (input) ) {
System.err.println ("*** ERROR – No such 

duck" + " was found! ***\n");
}
break;

case 'f':
case 'F':

System.out.print ("Enter duck's name : ");
input = Console.readString ();

if (!getFigures (input) ) {
System.err.println ("*** ERROR – No such 

duck" + " was found! ***\n");
}
break;

284 How to program using Java



case 's':
case 'S':

getStatistics ();
break;

case 't':
case 'T':

printTeams ();
break;

default:
System.out.println ("*** ERROR : \' " + 
choice + "\' was not an option! ***\n");

break;

}

} while (choice != 'q' && choice != 'Q');

}

The entire program
Finally, we are in a position to list the entire program. Assuming you have the
htpuj package and the Duck class from earlier in the chapter in your classpath
(see your Local Guide to establish how to do this), you should be able to compile
and run this program, and then add, delete, manipulate, and query duck crick-
eting figures to your heart’s content!

/* DuckDatabase.java – A fully-featured database for 
maintaining cricket statistics.

Author : GPH
Date : 5th July 2003
Tested on : Linux (Red Hat 7.3), JDK 1.4.1

*/

import htpuj.Console;
import java.util.ArrayList;

public class DuckDatabase
{
private ArrayList ducks;

public DuckDatabase ()
{
ducks = new ArrayList ();

}

public void addDuck ()
{
Duck d = new Duck ();

System.out.print ("Enter duck's name : ");
d.setName (Console.readString () );
System.out.print ("Enter duck's team : ");
d.setTeam (Console.readString () );

ducks.add (d);
}

public boolean modifyDuck (String name)
{
Duck tmpDuck = null;
char choice = ' ';
int tmpInt = -1;

Case study 285



boolean foundDuck = false;

for (int i = 0; i<ducks.size(); i++) {
tmpDuck = (Duck)ducks.get(i);

if (tmpDuck.getName ().equals (name) ) {
foundDuck = true;
break;

}
}

if (!foundDuck) {
return false;

}

do {
System.out.println (" ");
System.out.println ("Updating statistics for "

+ tmpDuck.getName() );
System.out.println (" ");
System.out.println ("***************************");
System.out.println ("* T – team *");
System.out.println ("* *");
System.out.println ("* S – runs scored *");
System.out.println ("* I – innings batted *");
System.out.println ("* *");
System.out.println ("* C – runs conceded *");
System.out.println ("* O – overs bowled *");
System.out.println ("* W – wickets taken *");
System.out.println ("* *");
System.out.println ("* Q – return to main menu *");
System.out.println ("***************************");
System.out.println (" ");
System.out.print ("Enter choice : ");
choice = Console.readChar ();

switch (choice) {
case 'c':
case 'C':

System.out.print ("Current figure is "
+ tmpDuck.getRunsConceded ()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();
if (tmpInt > tmpDuck.getRunsConceded () ) {
tmpDuck.setRunsConceded (tmpInt);

}
else {
System.err.println ("ERROR – figure lower"

+ "than old one!");
}
break;

case 'i':
case 'I':

System.out.print ("Current figure is "
+ tmpDuck.getInnings ()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();

if (tmpInt > tmpDuck.getInnings () ) {
tmpDuck.setInnings (tmpInt);

}

286 How to program using Java



else {
System.err.println ("ERROR – figure lower "

+ "than old one!");
}
break;

case 'o':
case 'O':

System.out.print ("Current figure is "
+ tmpDuck.getOvers ()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();

if (tmpInt > tmpDuck.getOvers () ) {
tmpDuck.setOvers (tmpInt);

}
else {
System.err.println ("ERROR – figure lower "

+ "than old one!");
}
break;

case 's':
case 'S':

System.out.print ("Current figure is "
+ tmpDuck.getRunsScored ()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();

if (tmpInt > tmpDuck.getRunsScored () ) {
tmpDuck.setRunsScored (tmpInt);

}
else {
System.err.println ("ERROR – figure lower "

+ "than old one!");
}
break;

case 't':
case 'T':

System.out.print ("Current team is "
+ tmpDuck.getTeam ()
+ ". Enter new team : ");

String tmpString = Console.readString ();

if (!tmpString.equals(tmpDuck.getTeam () ) ) {
tmpDuck.setTeam (tmpString);

}
else {
System.err.println ("ERROR – no change!");

}
break;

case 'w':
case 'W':

System.out.print ("Current figure is "
+ tmpDuck.getWickets()
+ ". Enter new figure : ");

tmpInt = Console.readInt ();

if (tmpInt > tmpDuck.getWickets () ) {
tmpDuck.setWickets (tmpInt);

}

Case study 287



else {
System.err.println ("ERROR – figure lower "

+ "than old one!");
}
break;

case 'q':
case 'Q':

break;

default:
System.err.println (choice + " not an option!");
break;

}
} while (choice != 'q' choice != 'Q');

return true; // only executed if duck was found initially
}

public boolean removeDuck (String name)
{
Duck tmpDuck;

for (int i = 0; i<ducks.size (); i++) {
tmpDuck = (Duck)ducks.get (i);

if (tmpDuck.getName().equalsIgnoreCase (name) ) {
ducks.remove(i);
return true;

}
}

return false;
}

public boolean getFigures (String name)
{
Duck tmpDuck;

for (int i = 0; i<ducks.size (); i++) {
tmpDuck = (Duck)ducks.get (i);

if(tmpDuck.getName ().equalsIgnoreCase (name) ) {
System.out.println (tmpDuck.getFigures () );
return true;

}
}
return false;

}

public void printTeams ()
{
ArrayList teams = new ArrayList ();
Duck tmpDuck;

// search ducks list, adding any new teams to teams list

for (int i = 0; i<ducks.size (); i++) {
tmpDuck = (Duck)ducks.get (i);
if (!teams.contains (tmpDuck.getTeam () ) ) {
teams.add (tmpDuck.getTeam () );

}
}

if (teams.size () == 0) {
System.out.println ("No teams found.");

}

288 How to program using Java



else {
System.out.println ("**********************************");
System.out.println ("The following teams were found :\n");

for (int i=0; i < teams.size (); i++) {
System.out.println ( (String)teams.get (i) );

}
System.out.println ("**********************************");
}

}

public void getStatistics ()
{
int runsScored = 0, wickets = 0;
double battingAvg = 0.0, bowlingAvg = 0.0,

runRate = 99999999.0;

String runsScoredName = " ", wicketsName = " ",
battingAvgName = " ",
bowlingAvgName = " ", runRateName = " ";

Duck tmpDuck;

for (int i = 0; i<ducks.size (); i++) {
tmpDuck = (Duck)ducks.get (i);

if (tmpDuck.getRunsScored () > runsScored) {
runsScored = tmpDuck.getRunsScored ();
runsScoredName = tmpDuck.getName ();

}
if (tmpDuck.getWickets () > wickets) {

wickets = tmpDuck.getWickets ();
wicketsName = tmpDuck.getName ();

}
if (tmpDuck.getBattingAverage () > battingAvg) {

battingAvg = tmpDuck.getBattingAverage ();
battingAvgName = tmpDuck.getName ();

}
if (tmpDuck.getBowlingAverage () > bowlingAvg) {

bowlingAvg = tmpDuck.getBowlingAverage ();
bowlingAvgName = tmpDuck.getName ();

}
if (tmpDuck.getRunRate () < runRate) {

runRate = tmpDuck.getRunRate ();
runRateName = tmpDuck.getName ();

}
}

System.out.println ("********");
System.out.println (" Most runs scored : " + runsScoredName

+ " (" + runsScored + ")");
System.out.println (" Best batting average : " + battingAvgName

+ " (" + battingAvg + ")");
System.out.println (" ");

System.out.println (" Most wickets taken : " + wicketsName
+ " (" + wickets + ")");

System.out.println (" Best bowling average : " + bowlingAvgName
+ " (" + bowlingAvg + ")");

System.out.println (" Best run rate : " + runRateName
+ " (" + runRate + ")");

System.out.println ("********\n");
}

Case study 289



290 How to program using Java

public void run ()
{

char choice = ' ';
String input = " "; // more efficient to declare this once

do {
System.out.println (" ");
System.out.println ("******** MAIN MENU *********");
System.out.println ("* *");
System.out.println ("* A – Add Duck *");
System.out.println ("* D – Delete Duck *");
System.out.println ("* *");
System.out.println ("* M – Modify Duck *");
System.out.println ("* F – Duck Figures *");
System.out.println ("* *");
System.out.println ("* S – Overall Statistics *");
System.out.println ("* T – Print teams *");
System.out.println ("* *");
System.out.println ("* Q – Quit *");
System.out.println ("****************************");
System.out.println (" ");
System.out.print ("Enter choice : ");
choice = Console.readChar ();

switch (choice) {
case 'q':
case 'Q':

break;

case 'a':
case 'A':

addDuck ();
break;

case 'd':
case 'D':

System.out.print ("Enter duck's name : ");
input = Console.readString ();

if (!removeDuck (input) ) {
System.err.println ("*** ERROR – No such duck"

+ " was found! ***\n");
}
break;

case 'm':
case 'M':

System.out.print ("Enter duck's name : ");
input = Console.readString ();

if (!modifyDuck (input) ) {
System.err.println ("*** ERROR – No such duck"

+ " was found! ***\n");
}
break;

case 'f':
case 'F':

System.out.print ("Enter duck's name : ");
input = Console.readString ();

if (!getFigures (input) ) {
System.err.println ("*** ERROR – No such duck"

+ " was found! ***\n");
}
break;



Case study 291

case 's':
case 'S':

getStatistics ();
break;

case 't':
case 'T':

printTeams ();
break;

default:
System.out.println ("*** ERROR : " + choice

+ " was not an option! ***\n");
break;

}
} while (choice != 'q' && choice != 'Q');

}

public static void main (String args[])
{
// minimalist main method, but this style is not uncommon
DuckDatabase dd = new DuckDatabase ();

dd.run ();
}

}

This is by a long way the longest and most complicated program in this book.
Don’t be daunted by it; take some time to go through it so that you can see how
it works. The chapter showed you how it was built up in small easy-to-handle
stages. By far the easiest way to understand how the program works is, of
course, to get hold of it and to try it out. Perhaps you can find a mistake!

There are no examples this time; the programs in this chapter have provided
quite enough. They have illustrated how a complete program is built up
gradually by adding functions and how functions can often be used in many
different programs.



292 How to program using Java

18.1 Our definition of batting average is actually inaccurate. The average is
really calculated as the number of runs scored divided by the number of com-
pleted innings. Add an attribute to the Duck class to store the number of times
an innings has not been completed; call it notOuts. Now rewrite the class so
that the average is calculated correctly as:

runsScored / (innings – notOuts)

18.2 As we discussed earlier, in the getBattingAverage, getBowling-
Average, and getRunRate methods, if a value is undefined, the method will
return �1. Currently the DuckDatabase program does not handle this error,
and will quite happily tell you that a duck has a batting average of �1.0. Modify
the program so that this condition is handled neatly. You may want to replace 
the �1.0 with something more informative (“undefined”, say), or even the entire
line of output (“Duck A has not batted”, for example).

18.3 Write a program that reads the attributes of a complete team of 11 ducks
and displays the list sorted by the number of runs scored.

18.4 Modify your program to sort the ducks based on their batting average.

18.5 Currently the getStatistics method displays only the best figure in
each category. Modify the method so that it displays the top three (handling the
cases where fewer than three ducks are present, or that fewer than three sets of
figures are available). This exercise will involve searching and sorting, but since
it deals with a definite number of figures (three), arrays (rather than
ArrayLists) can be used.

18.6 This chapter included a very basic program for testing the class. Write a
more thorough menu-based program that could be used to test the Duck class.

18.7 All the averages in this chapter are traditionally displayed to only two
decimal places. It is likely that your Java system is displaying many more places
of decimals; investigate the facilities in Java to do this.



Case study 293

When developing a complex Java program it is essential to develop the classes
that the program will use first. This does not mean that the programs them-
selves cannot be designed and perhaps even some of its functions started, but
no serious work should be done until the classes are complete. The golden rule
when developing a complex program is to develop and change one thing at a
time; this way, if something goes wrong the cause can only be in one place.

Of course complex programs need to be tested, as do classes. Before the end
of the book the next chapter provides some final advice on how to go about 
testing programs.



294



More on testing 295

This is very nearly the end of the book. You have now seen all the Java that you
are going to see in detail. You should by now be able to write quite complex
Java programs making use of many of the features available in the current ver-
sions of Java. You should be able to analyse a problem and then go on to design
and develop the classes and programs that will form the basis of a solution.

Of course, no solution is of the slightest use unless it works correctly. Many,
many pages ago, Chapter 10 explained the importance of testing and showed
you how to write a test plan for each of your programs. Hopefully you’ve been
doing this as you’ve written all your programs since then! There is truly no
point whatsoever in spending time on developing a program unless you also
take the time to test it thoroughly. An untested program is a worthless program
and is potentially a very dangerous program.

Since Chapter 10, the programs you have been working on have become
longer and more and more complicated. This chapter briefly explains some
ideas on how to test larger programs. The processes for testing larger programs
are much the same as in Chapter 10, so you might want to go back and quickly
read through it again. Larger programs bring with them the need for a very
structured approach to testing; unstructured and haphazard testing can be
worse than none at all.

Even with all this brave talk of testing it is important to remember that it is
never possible to prove that a program works correctly in every case. Testing
can only build up confidence in a program; it can never provide complete con-
fidence. It is rarely, if ever, possible to test a program with all the input values
that it will have to process. Nevertheless, the ideas in this chapter should 
mean that you are able to have a reasonably high level of confidence in your
programs.

After reading this chapter you should be able to systematically test large 
programs and classes. You should be able to write a driver program for a class,
and you should be able to use it to test a class. You should understand the 
difference between black box and white box testing, and you should understand
how to decide which to use for a particular test. You should also be able to dry
run a program.

Your programs should have a much better chance of working correctly!



296 How to program using Java

Testing a program thoroughly is just as important as writing the program in the
first place. In many ways it is in fact rather more important as an untested pro-
gram may contain many costly errors. Since the last chapter on testing your
programs have made use of more and more features of Java and have become
more and more complicated. It is crucial that you always test these complex
programs very thoroughly.

This chapter is not intended to provide a complete description of the correct
way to test programs. Whole books have been written on testing and a com-
plete description is way beyond the scope of any book on programming.
Instead, this chapter gives you some ideas of ways in which you can test your
programs and tries to convince you of the importance of testing.

You are already familiar with the idea of a test plan made up of a number of
test cases. This idea translates directly to longer programs; the only thing that
needs to be ensured is that the test cases in the plan cover every possible way
in which a program can execute, or every possible route through a program.
Your programs now include conditional statements and loops and so there are
now many different ways in which they can execute; there must be enough test
cases to test each of these possible execution routes thoroughly.

The test plans that you have written so far have relied on specifying a set of
input values and the expected output values. The programs have been tested
with each case and if the actual output matches the expected output in each
case the program has passed the tests. The approach is fine for simple and 
short programs but it is rarely sufficient for more complex programs. A more 
thorough approach to testing is needed.

Your programs now also make use of classes and these also have to be 
tested. A class is a building-block that is potentially useful in many programs.
Each class that a program makes use of must be properly tested before it 
is used; there is very little point in writing and testing a program that relies 
on a class that doesn’t work properly. This chapter ends by explaining how to
test a class before it is ever used in a program.

Routes through a program
By now your programs will probably be quite complex and there will be many
possible routes through. Conditional statements and loops control the possible
routes and each provides several possible ways for a program to execute. A test
plan must make sure that every possible route through a program is properly
tested. This means first of all that every possibility from each conditional state-
ment must be tested, as must every possible outcome of each loop.



More on testing 297

When a user is presented with a prompt to enter a value into a program there
is very little that limits what they can provide. Many failures in programs are
caused by users managing to provide completely unforeseen input values 
and so managing to take completely unexpected routes through the program. 
It is absolutely vital that every possible route through a program is thoroughly
tested, even if it seems very unlikely that it will ever be used.

First, each possibility in a conditional statement must be tested. For example,
in a program including this conditional statement:

int aNumber;

if (aNumber > 1 && aNumber < 10) {
// statements

}
else if (aNumber >= 10 && aNumber < 20) {

// statements
}

else {
// statements

}

the test plan must include values of aNumber that will cause each of the three
possible sets of statements to be executed. These will probably already be
boundary values in the test plan, but more values must be included if not.

When testing a loop the crucial thing to consider is the initial value of the 
condition controlling the loop. Here:

int aNumber;

while (aNumber < 10) {
// statements

}

it is important to test the program with values that will make the condition true
and so cause the loop to execute and also values that will make the condition
false and so mean that the loop is never executed.

It should be possible to represent each route through a program by a set of
input values. If it is not possible to specify a set of values that will cause a
certain route to be followed this rather begs the question of why the route is
there! This list of values can be quite long, even for quite a small section of a
program:

int grade;

char answer;

do {
System.out.print ("Enter the grade : ");
grade = Console.readInt ();

if (grade > 69) {
System.out.println (grade + " is an A");

}
else if (grade > 59) {

System.out.println (grade + " is a B");
}



298 How to program using Java

else if (grade > 49) {
System.out.println (grade + " is a C");

}
else if (grade > 39) {

System.out.println (grade + " is a D");
}
else {

System.out.println (grade + " is a E");
}

System.out.println ("Run Again? (y/n) ");
answer = Console.readChar ();

while (answer != 'y' && answer != 'n') {
System.out.println ("Please enter 'y' or 'n'");
System.out.println ("Run Again? (y/n) ");
answer = Console.readChar ();

}

} while (answer == 'y');

This code (which we believe is correct!) converts a numeric grade into a simple
letter scale. It also includes a simple dialogue to allow the user to run the
program again. It is fairly trivial.

The test plan for this code (and this would be only one small part of a 
program) is much less trivial. It must include:

● values of grade that cause each possibility in the conditional statement to be
executed;

● values of answer that cause each possible dialogue to be executed.

The first of these is quite straightforward. Each possibility requires boundary
values and at least one typical value. The dialogue is more complex. The test-
ing for this must deal with the possibility that the user provides a correct value
of y, a correct value of n, and a range of incorrect values. This must be tested in
both places where the user is asked to enter a value even though the code
appears to be identical.

The three possible test cases for the first prompt in the dialogue are:

● the user enters y to the first prompt, where the program should prompt for
another grade;

● the user enters n to the first prompt, where the program should finish.
● the user enters another value to the first prompt, where an error message

should be displayed and the user prompted again.

The same test cases also apply to the second prompt. It is easy to see how 
identifying all the possible cases can take some time. It is still important to do
this thoroughly.

There may be a temptation to test parts of a program in isolation. In this
example, the if statement and the two parts of the dialogue could be isolated
and tested separately. This would shorten the test plan and the time taken for
testing considerably but it could lead to overconfidence in the program. In a
program of any size it is entirely possible that a statement in one part of the
program can have an unexpected side effect elsewhere in the program. While
testing of the individual parts of a program is still a good idea, it is vital that
the final program is tested as a complete unit before it is released.



More on testing 299

Other ways of testing
So far all the testing described has concentrated on providing input values and
examining the output values. If the output values are as expected then the pro-
gram is assumed to work for that particular test case. In this process the
program itself has been treated as a “black box”, which is precisely what this
type of testing is called. The program is a black box in that its inner workings
are never examined; if it produces the correct output then it is assumed to work.

Black Box testing is usually effective but thorough testing requires that the
program itself be examined. To see why this can be necessary consider this
example:

int first, second;

System.out.print ("Enter the first number : ");
first = Console.readInt ();

System.out.print ("Enter the second number : ");
second = Console.readInt ();

int total = first + first;
System.out.println ("The total is " + total);

You can probably immediately see the error in this program. If you can’t, look
closely at the calculation just before the final output line. The error is easy to see
but only because the program code is available. This program would pass some
test cases in any black box testing; cases where the two numbers input were the
same would appear to work. It is even possible that a poorly written black box
test plan would lead someone to assume that the program did indeed work as
expected.

Testing by examining the program is called “White Box” testing. The pro-
gram is now a white box and its statements are available to be examined. There
are two possible approaches to white box testing. Both involve examining a
printout of the program rather than running it on a computer.

The first approach is to “dry run” the program. This involves taking a test
case and going through the program by hand, keeping track of the values of all
the variables and of what is output. In a way this is the same as black box test-
ing because the final output is available but the advantage is that all the inter-
mediate values are available too. This process can also be a very useful tactic
when debugging a program rather than testing it.

The other approach is similar but involves two people. The idea is that some-
one, probably the programmer, “walks through” the program with someone
else. The walkthrough involves explaining each line of the program in turn and
explaining the possible routes through, much like a dry run. The process of
working through the program can often highlight errors or reveal cases that
have not been considered. The programmer is rarely the best person to test a
program and should certainly not be allowed to test the program alone. The
presence of another person makes the testing more likely to be thorough.

Black box or white box?
Both these approaches to testing have their advantages. White box testing can
often find errors in programs that black box testing cannot and can sometimes
show up holes in the black box test plan. A black box test can only ever show
the presence of an error in the program, it can never show for certain exactly



300 How to program using Java

what is wrong. It is only when the program is examined in a white box test that
the cause of the error can be found.

For thorough testing both approaches should be used. It is probably sensible
to use black box testing first, not least because most of the time the process can
be automated. But when a program passes all the black box tests it should still
be thoroughly examined in a proper white box test.

Testing classes
Much of the discussion of testing so far has focused on testing complete pro-
grams. This has assumed that the classes used by the programs are known to
work correctly. Obviously for this to be the case the classes themselves must
also have been tested. They should certainly be thoroughly tested before they
are ever used in a program, and we have been testing many of the classes in this
book as we have gone along. It can be very frustrating and time consuming to
find and correct an error in a program only to discover that the cause or the
error is hidden away in a class used by the program.

Of course, classes cannot be tested in the same way as programs. Classes
cannot be run; there is no input to provide and no output to trace. The key to
testing a class is to use a small program that tests each method of the class in
turn. This allows for black box testing; the methods themselves should also be
examined in a white box test. We have met such driver programs before, when
we have written simple methods to allow us to test a class.

When a class is being developed, a program to test it may already be provid-
ed or may be developed by another programmer. There may be a test harness, a
program that can take the implementation of the class and test it. The class will
be acceptable only when it passes all the tests run by the test harness success-
fully. Alternatively, the programmer who developed the class may have to write
a simple driver program that will allow the class’s methods to be tested.

In many of the classes we have written we have also written a small driver
program in the main function. This is a fine habit to get into so that you can
make sure that your classes work. Another possibility is to use a standard name
for a method, test say, that runs a small test program for each class.

The first and simplest approach to writing a driver is simply to write a pro-
gram that calls each of the methods and displays the results. These are examined
to see if they are as expected in a way that is very similar to black box testing. A
simple program like this for one of our very familiar Duck classes might include:

public static void main (String args[])

{
String name;
int x, y;

// Declare a Duck

System.out.println ("Creating Duck...");
Duck aDuck = new Duck ();

// Set some initial values

System.out.println ("Setting as 'Elvis' at 5, 3...");
aDuck.setName ("Elvis");
aDuck.setX (5);
aDuck.setY (3);



More on testing 301

System.out.println ("Attributes are now: ");
System.out.println ("Name: " + aDuck.getName ());
System.out.println ("Position: " + aDuck.getX () + ", "

+ aDuck.getY ());
}

When it is run the program announces which methods it is using and dis-
plays the results:

Creating Duck...
Setting as 'Elvis' at 5, 3...
Attributes are now:
Name: Elvis
Position: 5, 3

The programmer can determine the correct results by hand and then examine
those produced by the driver program to see if the class is working as expected.

A more thorough approach, and one that allows a complete test plan to be
carried out, involves writing a simple menu to allow the user to call each
method as required. This type of driver program can be quite long but it is easy
to write; the menu structure is just like the one we used in the case study. As
before, the programmer can work out a set of tests and can then apply them
using the menu. The actual results can be compared to those produced to deter-
mine whether the class works correctly.1

These driver programs are simply used to test the programs so there is no
need for any sophisticated error checking in them or even for any checking of
the user’s input. They simply allow the tester to use the class and to examine
the results. When armed with a suitable plan the tester should be able to dis-
cover whether or not the class works as expected. There is an implicit assump-
tion here, of course, that the driver programs are correct. They should also be
tested! It is very annoying to discover that an apparent error in a class is caused
by sloppy programming in the driver.

Building and testing a program
A complete Java program involves classes as well as the program itself. 
It is important that the classes are written and tested before the program is
started (or at least before there is any contact between the two). There is very
little point in writing a program that relies on an untested class; if the two 
are developed and tested separately it is always much easier to trace and 
correct errors and bugs. This does not eliminate the possibility that writing a
program using a class will show up errors in the class, but it should reduce the
likelihood.

Thorough testing is a vital part of developing a program. It is even more
important in a language like Java, where programs are built up of various com-
ponents and are often written in many separate files. You should always test

1 That could have been written as “appears to work correctly”. Maybe it should have been.
Remember that this is what testing is demonstrating. Testing gives us confidence that a pro-
gram or class works as we expect and want; testing can never prove that a program or class
works correctly.



302 How to program using Java

your programs and you should certainly never be tempted to regard testing as
an afterthought.

Never be tempted to say things like “it looks as if it works”; always be sure
that it works!

Example 1 – Counting letters
Elvis has decided to take up word games. To help him in this new enterprise he has
written a simple program to count the number of vowels and consonants in a word.
Unfortunately, his program is not producing the correct results. Elvis cannot see the
error and so he decides to dry run the program to see what that reveals.

Here is the program:

/* WordStats.java – Count consonants and vowels in a word.

Author : AMJ
Date : 31st December 2002
Tested on : Red Hat 7.3, JDK 1.4.0

*/

import htpuj.*;

public class WordStats
{

private int consonants, vowels;
private String word;

public WordStats ()
{

consonants = 0;
vowels = 0;
word = "";

}

public void setWord (String w)
{

word = w;
}

public void count ()

{

for (int i = 0; i < word.length () – 1; i ++) {
if (word.charAt (i) == 'a' || word.charAt (i) == 'e'

|| word.charAt (i) == 'i' || word.charAt (i) == 'o'



More on testing 303

|| word.charAt (i) == 'u') {
vowels ++;

}
else {

consonants ++;
}

}
}

public void printResults ()
{

System.out.println ("\"" + word + "\" contains ");

if (vowels == 1) {
System.out.print ("1 vowel and ");

}
else {

System.out.print (vowels + " vowels and ");
}

if (consonants == 1)
System.out.println ("1 consonant");

}

else {
System.out.println (consonants + " consonants");

}

}

public static void main (String args[])
{

WordStats ws = new WordStats ();

// get word
System.out.print ("Enter word: ");
ws.setWord (Console.readString ());

// analyse
ws.count ();

// output results
ws.printResults ();

}

}

What would the dry run reveal? What is the error?

There is nothing obviously wrong with this program. Running it would reveal
that the results are always wrong. You might want to get hold of the program
from the web site and try it out. Remember that it doesn’t work!

Examples of its output are:

Enter word: bluej
"bluej" contains 2 vowels and 2 consonants

Enter word: elvis
"elvis" contains 2 vowels and 2 consonants



304 How to program using Java

Some people (people who are very good at word games and puzzles, probably)
might be able to deduce what the error is from just these two examples, but dry
running the program provides a more structured way to investigate what is
going on.

The first stage is to construct a simple table to keep track of the values of the
variables. The initial values of the variables are added first:

word consonants vowels i

Initial 0 0

Then the program is examined a line at a time, and each change in the value of
a variable is recorded in the table. Immediately before the for loop is reached
the table reads:

word consonants vowels i

Initial 0 0

Before loop bluej 0 0

The loop uses two methods of the string class, charAt and length. To keep
track of these it is easiest to add them to the table too:

word consonants vowels i length charAt(i)

Initial 0 0

Before bluej 0 0
loop

The table is updated again and again as the program progresses. By the end of
the first execution of the loop it is:

word consonants vowels i length charAt(i)

Initial 0 0

Before bluej 0 0
loop

After bluej 1 0 0 5 b
loop 1

After this point the condition controlling the loop:
i < word.length () � 1

can be seen from the table to correspond to:
0 < 5 � 1



More on testing 305

which is plainly still true and so the loop will execute again. This continues:

word consonants vowels i length charAt(i)

Initial 0 0

Before bluej 0 0
loop

After bluej 1 0 1 5 b
loop 1

After bluej 2 0 2 5 l
loop 2

After bluej 2 1 3 5 u
loop 3

After bluej 2 2 4 5 e
loop 4

At this point the condition is still:
i < word.length () � 1

which the tables reveals is now:
5 < 5 � 1

or indeed:
5 < 4

which is obviously false. This means that the loop will stop and the results will
be output.

It should now be clear what the error is; the final character of the string
is never being processed. The mistake is in the for loop continuation 
condition:
for (int i = 0; i < word.length () – 1; i ++)

which is clearly causing the loop to execute one too few times. The solution is
obvious:
for (int i = 0; i < word.length (); i ++)

This change will2 make the program work correctly.

Example 2 – Baddy’s pies
Buddy is rather amused at Elvis’s testing dilemma, but he is less smug when he encoun-
ters a testing dilemma of his own.

Buddy has been working on a program to divide the weekly supply of pies (kindly pro-
vided by Mr Martinmere), but is dismayed when it doesn’t seem to work properly. The
program is not very complicated; it just takes the number of pies and the number of
ducks and displays how many Buddy should give to each duck and how many will be
left over. Here it is:

/* PieShare.java – Shares pies between ducks.

Author : AMJ
Date : 31st December 2002
Tested on : Red Hat 7.3, JDK 1.4.0

*/

2 should?



import htpuj.*;

public class PieShare
{

private int pies, ducks;
private int piesPerDuck, leftOver;

public PieShare ()
{
}

public void setPies (int p)
{

pies = p;
}

public void setDucks (int d)
{

ducks = d;
}

public void calculate ()
{

piesPerDuck = ducks / pies;
leftOver = ducks % pies;

}

public void printResults ()
{

System.out.print ("Each duck should get ");
if (pies == 1) {

System.out.println ("1 pie.");
}
else {

System.out.print (pies + " pies.");
}

if (leftOver == 1) {
System.out.println ("There will be one pie left over.");

}
else {

System.out.println ("There will be " + leftOver +
" pies left over.");

}
}

public static void main (String args[])
{

PieShare ps = new PieShare ();
// get input values

System.out.print ("How Many Pies? ");
ps.setPies (Console.readInt () );

System.out.print ("How Many Ducks? ");
ps.setDucks (Console.readInt ());

// analyse
ps.calculate ();

// output results
ps.printResults ();

}
}

306 How to program using Java



More on testing 307

At the moment, the output of the program is wrong, and it has to be said somewhat
baffling. For example:

How Many Pies? 100
How Many Ducks? 10
Each duck should get 100 pies.
There will be 10 pies left over.

This is clearly wrong, but what is wrong with the program?

Problems such as this are often very difficult for the programmer to find. Black
box testing is clearly not helping very much so some sort of white box testing
is the only way forward. It is quite likely that by showing his program to anoth-
er programmer Elvis could quickly have the program solved.

The error in the program is in fact quite subtle, but very obvious once you
notice it. If you can see it immediately, go and get yourself a prize!

It is precisely the sort of error that another programmer seeing this program
for the first time could well spot immediately, but which the original program-
mer could spend many fruitless hours trying to find.

The problem is that Buddy has mixed up the order of values in his calcula-
tion. If you think about it for a minute, this:

piesPerDuck = ducks / pies;
leftOver = ducks % pies;

is clearly nonsense. The values are the wrong way round. This is correct:

piesPerDuck = pies / ducks;
leftOver = pies % ducks;

This is a simple mistake, but mistakes like this can be very difficult to spot,
especially if they’re in a program that you have written. Subtle errors such as
this are often best found by other programmers.

19.1 Examine this conditional statement. What is odd about it?

int aNumber;
if (aNumber < 10)
{

// statements
}
else if (aNumber >= 10}
{

// statements
}



308 How to program using Java

else
{

// statements
}

19.2 Write a program that prompts the user to enter five words and then sorts
them into alphabetical order. Use an array list and a Bubblesort. Dry run the
sorting function in your program with the words “sausage”, “egg”, “bacon”,
“tomato”, and “mushroom”.

19.3 Implement the Duck class from this chapter. Use a driver program to test
your implementation.

19.4 Write a driver program for the Cricketing Duck class from last chapter.
Use it to test the methods in the class. Pay particular attention to the methods
that were not used in any of the programs!

As programs become more and more complex so does the process of testing.
Testing should never be ignored. It should be seen as part of the process of pro-
gramming; a good programmer will always test the program as it is being
developed. A program is not complete when it has been written; it is complete
only when it has been thoroughly tested.

When you start to learn to program there can be a temptation to be so
relieved that a program works that you cannot bear to test it. Testing can uncov-
er mistakes that you have made and can mean that you are in for a lot more
work. Try not to succumb to this temptation. Always test your programs as
thoroughly as you can, and never be afraid to help other people test theirs.

Testing should always be a structured process and should always be carried
out according to a plan. The plan should be written before the program; don’t
be tempted to write the test plan to fit the parts of the program that work and
to hide the rest!

Testing a program is as important as developing it in the first place. Without
thorough testing any program is worthless.



309



This is the end of the book but it is not the end of Java.
Far from it, in fact.
Java has a great many more features that you haven’t yet seen or had any

need to use. Java is continuing to develop and more and more features will
certainly be added in the future. As Java becomes more popular, and as
computer programs become more and more complex, more and more powerful
features are added to the language. Although you haven’t seen any of these yet
you should hopefully now be able to pick them up as and when you need to 
use them.

This chapter describes five of the more advanced features that would make a
good next step in your learning. There’s nothing especially complicated here
but all this chapter aims to give you is a quick overview. By now you should be
able to understand a new programming concept and then go and try it out for
yourself.

After reading this chapter you should know about some of the more
advanced features of Java that have not been covered in this book. You should
understand what they offer and you should know how to find out more about
them if you need to.

310 How to program using Java

This chapter describes five more advanced features of Java:

● Exception handling;
● Input and output using files;
● Overloading;
● Inheritance;
● A very basic introduction to Graphical User Interfaces (GUIs).

Each of these is described in turn; they are arranged in no particular order.



These sections do not aim to provide a complete description of these ideas.
They should give you a flavour of what each topic is about; this should be just
about enough so that you can try them out yourself in your own programs.

Exception handling
Sometimes, when a program is running, something happens that is unexpect-
ed. In Java, this is called an exception. If Java detects such an event, it “throws”
an exception to indicate that something has gone wrong. We have ignored the
possibility of exceptions in all the programs in this book (even if they have
cropped up at times); obviously this is not a good idea in programs that are
required to be robust.

The main difference between exceptions and other ways of signalling errors
is that when an exception is thrown, the program is guaranteed to halt unless
the programmer takes measures to handle the exception. A mechanism is 
provided to “catch” any exception that Java “throws” allowing the program to
perform some suitable action. Let’s look at an example.

So far we have assumed that a program’s user has always entered an integer
when one was expected. This is actually flawed thinking, since users are 
unlikely to behave in such a helpful and predictable way. Here is a simple
program fragment that reads an integer:

int i;

System.out.print ("Enter a number: ");
i = Console.readInt ();
System.out.println ("You entered " + i);

This fragment works just as expected when the user enters an integer as 
expected:

tetley% javac ReadInteger.java
tetley% java ReadInteger
Enter a number: 12
You entered 12

Things start to go wrong when the user enters a string instead:

tetley% java ReadInteger
Enter a number : seven
Exception in thread "main" java.lang.NumberFormatException: For input
string: "seven"

at
java.lang.NumberFormatException.forInputString(NumberFormatException.
java:48)

at java.lang.Integer.parseInt(Integer.java:468)
at java.lang.Integer.parseInt(Integer.java:518)

at htpuj.Console.readInt(Console.java:28)
at ReadInteger.main(ReadInteger.java:8)

The output on your Java system might look a little different, of course, but it
should look something like this. Crucially, it should contain the name of the
exception that has been thrown.

Java is telling us here that an exception has been thrown. The name of the
exception is on the first line of the error – NumberFormatException. The rest
of the message is telling us where in Java’s internals this has happened; to a
beginner, this is not especially useful information, except that the last two lines

Onward! 311



do tell us that this has happened in a call to Console.readInt from line 8 of
the file ReadInteger.java. This error is obviously best avoided.

The trick in doing this is to catch the exception. The statements that might
throw an exception are enclosed in braces with the try statement:

try {
i = Console.readInt ();

System.out.println ("You entered " + i);
}

This has no effect on the way in which the program runs. The difference is now
that the program can catch the exception:

try {
i = Console.readInt ();

System.out.println ("You entered " + i);
}

catch (NumberFormatException exception) {
System.out.println ("Not an Integer!");

}

This code simply prints out an error message if the exception is thrown. The
effect is now:

tetley% javac ReadInteger.java
tetley% java ReadInteger
Enter a number: twelve
Not an Integer!

You can place any legal Java code inside the catch block, so in the case
above, we print a useful warning message. Often, the catch block is used to fix
or work around an error where possible, or to tidy up before exiting abnormal-
ly, by closing open files, logging the error and the like. A common and useful
method to include in the catch block is the built-in printStackTrace method
(which can be called on any exception object). This prints a lot of debugging
information (as we saw above with the NumberFormatException), and can
be useful for tracing obscure errors in your code, especially when shown to a
seasoned Java buff:

catch (NumberFormatException exception) {
exception.printStackTrace (); // display debugging information

}

A final word about exceptions. Some programs you see might have methods
that look like the following:

public void read () throws Exception

This has effectively stated that the method is allowed to throw exceptions, and
that the code which calls the method should handle them. Without the final part
the compiler will check the method implementation and will warn about
possible exceptions that are not trapped. In programs designed to be robust
(hopefully all of them!) it is essential to trap all exceptions and to deal with
them sensibly.

312 How to program using Java



Input and output using files
Taking the case study program as an example, it is obvious that only the most
basic programs operate without receiving input from files, and without writing
at least some data to files. However, up to now we have not learned how to
achieve this in Java. Thankfully help is at hand, as Java provides all manner of
classes allowing you to read, write and otherwise manipulate files. These class-
es live in the package java.io, and we will briefly discuss only two such class-
es (FileReader and FileWriter), and two wrapper classes which handle
buffering the reading and writing for efficiency.

The overhead of using the FileReader and FileWriter classes directly to
transfer data can be massive, especially if there is a lot of data to access in many
small chunks. Think back to the cooking analogy near the start of the book –
when weighing out 200 g of sugar, it is easier and more efficient to open the
packet and transfer the contents onto the scales a handful, rather than a granule,
or even a spoonful, at a time.

Similarly with file reading and writing, it is far more efficient to read and
write in a few large chunks (say a line at a time), rather than a large number of
small chunks (say word by word, or character by character). Java provides two
classes, BufferedReader and BufferedWriter, which take care of reading
and writing data in large chunks, sometimes even without the programmer
knowing. Another handy side effect of using the buffer classes is that the inter-
face is much easier for beginners to learn; the FileReader and FileWriter
classes tend to operate on a character at a time, or with arrays of characters, but
the buffer classes hide this complexity, allowing the programmer to work
entirely with more familiar and less cumbersome Strings. Full details of all
these classes can, of course, be found in the API documentation.

One final point to mention, which is important to consider whenever you are
performing file input or output in Java, is that just about all the methods can
potentially throw exceptions (usually IOException), so a method which calls
file input or output code should contain a try block with a matching catch
block to handle the exception.

Reading data from a file
FileReader has several constructors, the one we will use takes one argument,
a String, containing the path to the file that we want to read from:

FileReader file = new FileReader ("c:\path\to\file");

In order to make the reading more efficient, we pass a FileReader object as
an argument to the BufferedReader constructor:

FileReader file = new FileReader ("c:\path\to\file");
BufferedReader reader = new BufferedReader (file);

The two statements can be combined, by creating the FileReader object on
the fly (which is fine in this case, as we don’t need to access the object directly
again):

BufferedReader reader = new BufferedReader 
(new FileReader ("c:\path\to\file") );

Using a BufferedReader to read data is easy. Internally, the class keeps
track of the current position in the file, and the single method we will discuss,

Onward! 313



readLine, reads all the data it can from the current position up to but not
including the next carriage return. Let’s create a dummy file to test this on:

This is a line of text.
This is another line.

Save the file and make sure you remember its name. For the sake of argu-
ment, let’s call it testfile.txt. Now to initialise the reader object (remem-
bering to include the appropriate libraries):

import java.io.*; // IMPORTANT!

try {
BufferedReader reader = new BufferedReader 

(new FileReader ("testfile.txt") );
}
catch (IOException ioe) {
System.err.println ("Error reading from testfile.txt");

// ioe.printStackTrace (); // uncomment for more verbose output
}

We can now read from the file using the readLine method:

System.out.println (reader.readLine () );

This gives the output:

This is a line of text.

Reading a whole file is not as straightforward as including the readLine call
in a loop because no exception is thrown when the end of the file is reached.
Thankfully, the readLine method returns the special value null when it
attempts to read past the end of the file, so we can include a check for this in
our loop:

String tmpString = " ";

do {
System.out.println (tmpString);
tmpString = reader.readLine ();

} while (tmpString != null);

This code should loop through the file, printing out each line in turn. When the
end of the file is reached, the readLine method returns the value null, and 
the check tmpString != null fails, dropping control out of the loop.

The final thing we need to do is close the input stream. This stops the file
from getting corrupted, and also releases resources that the system can use 
elsewhere. The method to close the stream is the imaginatively titled close:

reader.close ();

Writing data to a file
We have encountered the classes needed for input from files, so now let’s look
at their partners in crime, the output classes. As we said at the start of the sec-
tion, the classes are called FileWriter and BufferedWriter, and their
behaviour is again fairly easy to comprehend.

Similar to the way we created a reader object above, we create a
BufferedWriter object, which takes a FileWriter object as an argument.
This FileWriter object in turn takes a String containing a filename as an

314 How to program using Java



argument. This all takes place inside the requisite try block, with its compan-
ion catch block below.

Creation of the writer object is straightforward:

BufferedWriter writer = new BufferedWriter 
(new FileWriter ("c:\path\to\file") );

Once again, we only require a handful of methods. The first of these is the
write method, which takes a String as an argument, and writes the contents
of that String to the file:

writer.write ("testing 1 2 3");

One limitation of this method compared with the more familiar
System.out.print methods is that you should pass a String and only a
String as an argument. There is another version of this method which takes
an int, but this does something completely different, and can cause all manner
of confusion. Thankfully, there is a way to force the compiler and JVM to treat
something of a different type as if they were a String; since we can append
any of these values to a String, we simply append them to an empty String:

writer.write ("" + 4); // writes the String '4' to the file

It is probably also worth remembering that the write method will write exact-
ly what you tell it to, so if you want to write a line of text, you’ll need to make
sure you also write the ‘\n’ (newline) character at the end of the line!1

The second method we need to know about is the close method, for the same
reasons outlined earlier for the reader class. The syntax is exactly the same:

writer.close (); // close the output stream

However, this is not the whole story. As we are buffering the data to output, we
need to ensure that it has all been written to the file before we close the output
stream. There is a third method, flush, which forces a transfer of the buffer’s
contents to the file (known as flushing the buffer). This is frequently found in
file writing code:

writer.flush (); // write every last byte
writer.close (); // close file

So, let’s look at some example code for file writing. Then we’ll revisit the case
study to incorporate what we’ve learned into a real program.

import java.io.*;

...

try {
BufferedWriter writer = new BufferedWriter 

(new FileWriter ("testfile2.txt") );
writer.write ("Oh let the sun beat down upon my face\n”);
// any other output we wish
writer.flush (); // flush the buffer

Onward! 315

1 In fact, if we instantiated a PrintWriter object (from package java.io), taking 
this BufferedWriter object as an argument, we would have access to the same print
and println methods as the System.out class. This means that we could use
printWriter.println (line);, rather than writer.write (line � "\n");
Try it for yourself.



writer.close (); // close the file

}

catch (IOException ioe) {
System.err.println ("Error writing to testfile2.txt");

// ioe.printStackTrace (); // uncomment for more verbose output

}

Now, examining the file (testfile2.txt in this case) in your editor of choice,
it should hopefully contain the line that we wrote in our program.

Extending the DuckDatabase class to incorporate file I/O
Rather than include the whole class again, it makes sense to only include the
changes we need to make over the first version.

For the time being, let us make the use of files optional; this means we 
need to extend the main menu to include options for reading from and writing
to files. We should also locate the reading code in a method of its own
(readFromFile, say), and likewise the writing code (in the interest of consis-
tency, writeToFile). This leaves the class’s interface unchanged so that any
existing programs will still work as expected.

Rather than hard-wiring filenames into our code, it would be useful if we
could pass the name of the required file to these methods as an argument.

Extending the menu is easy enough and we print a couple of extra lines to the
console, and add a couple of extra options to the switch statement:

System.out.println ("* R – Read data from file *");
System.out.println ("* W – Write data to file *");

case 'r':
case 'R':

System.out.print ("Enter filename : ");
String name = Console.readString ();
readFromFile (name);
break;

case 'w':
case 'W':

System.out.print ("Enter filename : ");
String name = Console.readString ();
writeToFile (name);
break;

Next we need to implement the readFromFile and writeToFile methods.
But before this, we should really decide on a file format for these methods – that
is, the order in which we will store data elements for each duck, and more 
generally, how we order the ducks in the file. Probably the most obvious format
would be to have each attribute on a separate line, in the order in which they
are found in the Duck class:

● name
● team
● overs bowled
● wickets taken
● runs conceded
● innings batted
● runs scored

316 How to program using Java



The easiest way to separate the data for different ducks would be to have 
a blank line between the last value of the first duck and the first value of the 
second duck, and a marker after the last duck (say “EOF” for end of file). This
way the code for reading the data can be written inside a loop, and the loop
condition can be:

if the next line contains nothing but the String "EOF",
finish,

else continue

The logic for the writeToFile method is as follows:

OPEN FILE FOR WRITING
FOR EACH DUCK IN THE LIST
WRITE DATA TO FILE IN SPECIFIED ORDER
IF THIS IS THE LAST DUCK
WRITE "EOF" TO FILE

ELSE
WRITE BLANK LINE TO FILE

FLUSH AND CLOSE FILE

Transferring this into working Java code is not too difficult, especially as most
of the concepts should be familiar to you by now. We will need a for loop sim-
ilar to existing ones in the DuckDatabase class, in that it must loop through an
ArrayList, creating a temporary Duck object with each iteration, and dump
the data from this object to the file.

public void writeToFile (String filename)
{
Duck tmpDuck; // temporary object

try { // code may throw exceptions!
BufferedWriter writer = new BufferedWriter 

(new FileWriter (filename) );

for (int i = 0; i<ducks.size (); i ++ ) {
tmpDuck = (Duck)ducks.get (i); // get reference to duck

writer.write (tmpDuck.getName () + "\n");
writer.write (tmpDuck.getTeam () + "\n");
writer.write (" " + tmpDuck.getOvers () + "\n");
writer.write (" " + tmpDuck.getWickets () + "\n");
writer.write (" " + tmpDuck.getRunsConceded () + "\n");
writer.write (" " + tmpDuck.getInnings () + "\n");
writer.write (" " + tmpDuck.getRunsScored () + "\n");

// if we’ve written the last duck, write "EOF"
if (i == ducks.size () – 1) {

writer.write ("EOF");
}
else { // otherwise, write a blank line

writer.write ("\n");
}

}
writer.flush (); // ensure every last byte is written
writer.close (); // close the file

}
catch (IOException ioe) { // handle exceptions

System.err.println ("Error writing to " + filename);

Onward! 317



// ioe.printStackTrace (); // uncomment for full output
}

}

The readFromFile method is similar to the writeToFile method in many
ways (which should be obvious, given that they are exact opposites). Logically,
it should work as follows:

OPEN FILE FOR READING
UNTIL END OF FILE REACHED
READ DATA, SETTING DUCK VALUES IN SPECIFIED ORDER

CLOSE FILE

Again, translating this logic into Java code should be fairly easy by now, as the
principles are familiar. This time, rather than a loop where we read values from
a Duck object and then write them to a file, we will read values from a file and
then write them to a Duck object!

The only real complication is that the file contains only Strings, and 
most of the values we wish to change are ints, so we will need to convert
between the two. This is not a major problem, as we have already met the
Integer.parseInt static method:

String s = "4";
int i = Integer.parseInt (s); // i now contains the int value 4

Therefore in all the cases where we expect an int value, we will need to call this
parseInt method on the return value of the readLine method. Other than
that, there is very little Java in this method that you haven’t already met several
times.

public void readFromFile (String filename)
{
Duck tmpDuck; // temporary object
String buf = " ";

try {
BufferedReader reader = new BufferedReader 

(new FileReader (filename) );

do {
tmpDuck = new Duck ();
tmpDuck.setName (reader.readLine ());
tmpDuck.setTeam (reader.readLine ());
tmpDuck.setOvers (Integer.parseInt (reader.readLine ()));
tmpDuck.setWickets (Integer.parseInt (reader.readLine ()));
tmpDuck.setRunsConceded (Integer.parseInt

(reader.readLine ()));
tmpDuck.setInnings (Integer.parseInt (reader.readLine ()));
tmpDuck.setRunsScored (Integer.parseInt

(reader.readLine ()));
ducks.add (tmpDuck);

// read next line – blank means more ducks, EOF means end.
buf = reader.readLine ();

} while (!buf.equals ("EOF"));

reader.close (); // close file
}

318 How to program using Java



catch (IOException ioe) {
System.err.println ("Error reading from " + filename);
ioe.printStackTrace ();

}
}

Inheritance
It is not uncommon for an application to contain many classes that are very 
similar. Applications will deal with different types of people, bank accounts,
books, or animals. There are many occasions when a method written for one
class can be used in another and where different classes have the same attrib-
utes. In this case there can often be a great deal of code that has to be dupli-
cated in the different classes. We have seen this several times when code for
different types of animal has had to be duplicated in different classes.

Sometimes the classes form a hierarchy. For example, if an application needs
classes representing different kinds of people – students, teachers, bus conduc-
tors – many of the different classes will have the same attributes. It would be
very wasteful to have to implement the same methods in each class.

Java provides a mechanism to allow for this, called inheritance. Inheritance
allows the programmer to define one basic class and to allow other classes to
inherit all the attributes and methods of this class. The inheriting classes have
all the attributes and methods of this class and can also have their own. The
most common example is probably a class for People that would hold names,
birthdays, and so on, and would be inherited by classes representing particular
types of people such as students and bus conductors.

The class that contains the common attributes and methods is called the base
class and the classes inheriting from it are called derived classes. The base class is
defined first in the usual way:

public class Person {
private String name;
private int age;
private String address;

public Person ()
{
}

public void setName (String newName)
{
name = newName;
return;

}

public void setAge (int newAge)
{
age = newAge;
return;

}

public void setAddress (string newAddress)
{
address = newAddress;
return;

}

Onward! 319



public String getName ()
{
return name;

}

public int getAge ()
{
return age;

}

public string getAddress ()
{
return address;

}
}

Derived classes include only the attributes and methods that are unique to
them. All the other attributes and methods are inherited from the base class, the
name of which is specified on the first line of the class’s definition:

public class BusConductor extends Person
{
private int busRoute;

public BusConductor ()
{
}

public void setBusRoute (int newBusRoute)
{
busRoute = newBusRoute;
return;

}

public int getBusRoute ()
{
return busRoute;

}
}

So here an object with the type BusConductor has the attribute busRoute
(together with a selector and a mutator) together with all the attributes and
methods of the Person class. Similar classes could be implemented for any 
particular type of person.

Inheritance can save a great deal of coding. There can be many levels of
inheritance in an application with derived classes acting as base classes for
others.

Overloaded methods
Methods in Java are identified by the combination of the name of the method,
the type of the returned value, and the types of any parameters. It is this
combination of information together that identifies the method; there is no need
for every method in a class to have a different name. A number of methods can
have the same name if there is something else that can be used to distinguish
them; the method can be overloaded.

Suppose that some application exists that requires much calculation of 
averages. It might be necessary to calculate the mean of two numbers or three

320 How to program using Java



numbers; to complicate matters further the three numbers might be stored in an
array or in individual variables. These methods might be defined as:

public double meanOfTwo (int x, int y)
{
return (double) (x + y) / 2;

}

public double meanOfThree (int x, int y, int z)
{
return (double) (x + y + z) / 3;

}

public double meanOfArray (int n[])
{
return (double) (n[0] + n[1] + n[2]) / 3;

}

These methods have been given different names but there is no particularly
good reason to do this. If all the methods were called simply mean:

public double mean (int x, int y)
{
return (double) (x + y) / 2;

}

public double mean (int x, int y, int z)
{
return (double) (x + y + z) / 3;

}

public double mean (int n[])
{
return (double) (n[0] + n[1] + n[2]) / 3;

}

it would still be obvious which one was being called from the types and
number of parameters. This call:

mean (a, b);

is clearly calling the first version since two parameters are provided, while this:

mean (a, b, c);

must be a call to the second version as there are three parameters.
In this example the method name mean has been overloaded; there are three

methods with this name. This is fine as long as the method that is being called can
be uniquely determined by examining the type and number of its parameters.

This technique can make programs much more readable and can save the
programmer from having to use what amount to artificial names for methods.

The following program illustrates this idea with some more examples. Each
time the method mean is called the parameters uniquely determine which is to
be used.

/* Numbers.java

Example of Overloading Methods.

Author : AMJ
Date : 8th February 2003
Tested on : Linux (Red Hat 7.3), JDK 1.4.1

*/

Onward! 321



public class Numbers
{
private int num1;
private int num2;
private int num3;

private int nums[];

public Numbers ()
{
num1 = 1;
num2 = 2;
num3 = 3;

nums = new int [3];

nums[0] = 4;
nums[1] = 5;
nums[2] = 6;

return;
}

public double mean (int x, int y)
{
return (double) (x + y) / 2;

}

public double mean (int x, int y, int z)
{
return (double) (x + y + z) / 3;

}

public double mean (int n[])
{
return (double) (n[0] + n[1] + n[2]) / 3;

}

public static void main (String args[])
{

Numbers n = new Numbers ();

System.out.println ("Two integer mean : "
+ n.mean (n.num1, n.num2) );

System.out.println ("Three integer mean: "
+ n.mean (n.num1, n.num2, n.num3) );

System.out.println ("Array mean : " + n.mean (n.nums) );
}

}

All the methods of a class can be overloaded, including the constructor. It is
possible to provide a set of constructors that set a variety of combinations of
initial values, for example.

A (very) basic introduction to GUIs
Part of the reason Java was developed was to provide a language for cross-
platform production of GUIs, and hence packages for building elegant GUIs are
part of the core of the language. Therefore it would be a shame not to take a
look at this feature of the language, at least in passing. However, this is a huge

322 How to program using Java



topic (indeed, very thick books on the matter adorn Java programmers’ book-
shelves everywhere!), so this small dip into GUIs must be treated as very basic,
and merely a springboard to further study if you so wish.

In larger, more complex GUI-based programs, literally millions of lines of
code can be devoted to the workings of the user interface, and very little to the
actual core tasks that the program is performing. The program needs to keep
track of keyboard and mouse interactions, monitor settings, and much much
more, and just about all the Java you would need to do this is way beyond the
scope of this book. Thankfully, the designers of Java have provided a way to
ignore most of these overheads and simply display a message in a box on the
screen. This is hardly ground-breaking, but it can add an impressive touch to an
otherwise ordinary program.

The JOptionPane class (in package javax.swing) has many static meth-
ods, which allow the programmer to create simple pop-up dialogue, which
should appear on any system running Java with a windowing system (of which
Microsoft Windows, Mac OS and X11 are the most likely). So without further
ado, let us take one of our earlier examples, which is crying out for a graphical
makeover: Bruce’s Sign class.

The current version of this class displays Bruce’s messages on the console.
This is fine, but something more graphical would surely look more impressive.
As we make these changes, most of the existing version of Sign.java remains
intact; we still have a message variable, a constructor, a setMessage method,
and a display method. However, the change comes in the display method where:

System.out.println (message);

becomes:

JOptionPane.showMessageDialog (null, 
message,
"Bruce’s Sign", 
JOptionPane.INFORMATION_MESSAGE);

This looks complicated at first glance, but it is actually quite straightforward.
The first argument would normally be a reference to the parent window (that
is, the window over which you want your dialog to appear). As we do not
know enough Java to create such a window, we leave this as null, which the
compiler treats as meaning the desktop. Hence the box appears in the centre of
the screen.

The second and third arguments are the message and title bar strings, respec-
tively. The message string is the text you wish to display in the dialog box, and
the title bar string is the text you wish to display in the bar at the top of the box.

The last argument requires a little explanation. The JOptionPane class
provides four default icons for the dialog box: ERROR_MESSAGE, INFORMATION_
MESSAGE, WARNING_MESSAGE, and QUESTION_MESSAGE.

Passing these as the fourth argument will change the icon that appears in 
the dialog box. There is also fifth option, PLAIN_MESSAGE, which corresponds to
‘no icon’.

/* Sign.java – Bruce’s graphical wonder sign

Author : GPH
Date : 17th July 2003
Tested on : Linux (Red Hat 9), JDK 1.4.2

*/

Onward! 323



import javax.swing.JOptionPane;

public class Sign
{
private String message;

public Sign ()
{
}

public void inputMessage ()
{
message = JOptionPane.showInputDialog ("Enter a message :");

}

public void display ()
{
JOptionPane.showMessageDialog (null, message, "Bruce’s Sign",

JOptionPane.INFORMATION_MESSAGE);
}

public static void main (String args[])
{
Sign sign = new Sign ();
sign.inputMessage ();
sign.display ();

}
}

The only line of this code that requires any explanation is the body of the
inputMessage method. Rather than taking a string value as an argument,
here we prompt the user to enter the message for Bruce’s sign via another dia-
logue box. This is the simplest way to obtain user input via a GUI, and is
extremely useful. The showInputDialog method returns the text entered as a
String object, and the message attribute is set to this value.

That really is all there is to creating a simple graphical application. Of course,
to create a more complicated one, there is a lot of learning ahead…

There’s more!
That really is all the Java in this book. There is still much more. Many Java
reference books run to well over a thousand pages and the language is still
growing.

324 How to program using Java



Onward! 325

There are no examples this time; there were quite enough examples in this
chapter anyway! The time has come now when you should be able to think of
your own examples to try …

Only one exercise this time, but make sure that you do it a few times!

20.1 Write a program. It can do anything you like as long as it uses most of
the Java that you have seen and used up to now. When you have finished and
tested this program, write another. Remember that the only way to become 
a good programmer is to practise.



This is the end of the book.
Congratulations on getting this far. You’ll probably be quite relieved to have

made it here. You’ll certainly have seen and learned a lot. Remember that learn-
ing to program is difficult and if you’ve got this far you’ve achieved something
that should make you rather proud.

This chapter has shown you just a few of the other features that are available
in Java. You should now be able to find out more about these and also about the
ones that haven’t been mentioned. You should be able to understand and use a
Java reference book and you should be able to develop more and more as a
programmer.

In a way the end of this book is just a beginning. Programming is a skill that
develops with practice. Even the most experienced programmer is always
learning. Programmers will always be learning a new language or a new tech-
nique. As computers develop in the future so will the languages that are used
to program them. There is no end to this trend in sight. Hopefully you are now
in a good position to start to become a programmer.

Remember that you have not just learned Java. You have learned program-
ming. Virtually all the ideas and techniques you have seen and used in Java are
also available in other languages. The syntax will be slightly different but that
is all that you will have to learn when you come to a new language. You’ll know
what you need to do and will just have to look up the syntax. The hard work 
is done.

What you need to do now is practise. When you’ve done that, do some more.
The more you write programs the better you become at it and the easier and
more natural it becomes. Many programmers find programming an extremely
rewarding and creative process. Hopefully you’ll come to believe that too.

Our job here is done. Now it’s down to you. Whether you’re going to go on
and learn more Java or whether it’s going to be a different language we wish
you the best of luck. Remember to keep on learning.

Onward!

326 How to program using Java



327



Every programmer, even the most experienced, works with a handy language
reference beside the computer. No programmer can be expected to remember all
the fiddly little details of the syntax of a modern programming language and it
is essential that you get used to using a reference. In the future that might be a
book describing all of the Java language but for the moment this section will do.

This chapter gives you examples of all the Java you’ve seen in this book, all
arranged in the same place. It’s in just about the same order as the book and the
sections are numbered (there’s a small contents list at the start) so that you can
(hopefully!) easily find the example you need. If you’re lucky, some of the
examples here might slot right into the program you’re trying to write.

If you can’t find what you need here you can also try looking through the
solutions to the exercises. One of the best ways of working out how to write a
program is to look at a program that does something similar; you might even
be able to adapt something. Failing that, there’s always the index!

Contents
1. Comments 328
2. Basic structure 329
3. Defining attributes or variables 329
4. Defining constants 329
5. Types 329
6. Converting between types 329
7. Assignments 330
8. Operators 330
9. Output 331

10. Input 331
11. Defining a class 331
12. Using a class 332
13. Conditional statements – if 332
14. Conditional statements – switch 334
15. Loops – for loops 334
16. Loops – while loops 335
17. Loops – do … while loops 335
18. Method prototypes 336
19. Method parameters – value parameters 336
20. Method parameters – reference parameters 336
21. Static methods 336
22. Arrays 337
23. Array lists 337

1. Comments
Any line starting // is a comment.

// This is a comment
// So is this

Any part of a line after a // is also a comment.

x = 0; // This explains why that is complicated

Any section of a program enclosed between /* and */ is also a comment.

328 How to program using Java



/*
Anything that appears here is a comment.
*/

2. Basic structure
Any file containing a Java program or class definition starts with a comment
describing its purpose and providing other useful information. The basic
structure after this follows a set pattern.

// Any included libraries or files
public class someClass {

// Attributes
// Methods
// main method (if included)

}

3. Defining attributes or variables
An attribute variable has an identifier (name) and a type. It is our convention
that attributes are always declared to be private, so that they may only be
accessed by methods of the class.

public int aNumber;
public String aName;
public boolean finished;

The variable can also be given an initial value.

public int aNumber = 0;
public String aName = "Elvis";
public boolean finished = false;

4. Defining constants
Constant values are declared in a similar way to variables. Constant values
cannot be changed.

final int MAXTURNS = 10;
final String BOOK = "How to Program Using Java";
final double PI = 3.1415;

5. Types
The following data types have been used in this book:

int an integer – positive or negative (or 0)
double a floating-point number
char a single character
String a sequence of characters
boolean a Boolean value – true or false
ArrayList a collection of other values

6. Converting between types
The names of these types can be used to convert values between types. This
process is known as casting.

Java reference and examples 329



public int aNumber = 11;
public double aDouble;

aDouble = double (aNumber);

7. Assignments
Variables are assigned values in assignment statements:

aNumber = 10;
aString = "hello";
aDouble = 3.1415;

The right-hand side can be an expression.

aNumber = 10 + 2;
aString = "hello " + "world";
aDouble = 1.5 + 3.2;

Identifiers can appear on both sides of the assignment operator.

aNumber = anotherNumber + 10;
aNumber = aNumber + 1;

Various shorthand forms for common operations exist.

aNumber ++; // aNumber is incremented
aNumber --; // aNumber is decremented
aNumber += 3; // 3 is added to aNumber
aNumber -= 4; // 4 is subtracted from aNumber
aNumber /= 2; // aNumber is divided by 2
aNumber *= 4; // aNumber is multiplied by 4

8. Operators
There are four basic arithmetic operators. In order of precedence they are:

/ Division
* Multiplication
� Addition (of numbers) or concatentation (of strings)
- Subtraction

These work as expected for numeric data.

aNumber = 2 + 2; // assigns 4
aDouble = 1.5 + 3.7; // assigns 5.2

The addition operator concatenates two strings.

aString = "Elvis " + "the Duck";
// assigns "Elvis the Duck" (without the quotes)

Operators are applied in order of precedence. The order is as in the table above.

aNumber = 10 + 6 / 2; // aNumber is assigned 13
aNumber = 10 / 2 + 3; // aNumber is assigned 8
aNumber = 10 + 3 * 2; // aNumber is assigned 16

The order can be affected by adding brackets.

aNumber = (10 + 6) / 2; // aNumber is assigned 8

330 How to program using Java



aNumber = 10 / (2 + 3); // aNumber is assigned 2
aNumber = (10 + 3) * 2; // aNumber is assigned 26

9. Output
Values are displayed on the screen using System.out.print and
System.out.println. The first prints the string supplied as its argument,
and the second does exactly the same but also moves output to the next line
after printing.

System.out.print ("hello");
System.out.println (aNumber);

Numeric values can be included in the argument:

System.out.println ("The number is " + aNumber);

If quotes are required in the output they are preceded with \.

System.out.println ("\"hello\"");

10. Input
We have used our own Console class for reading values from the user.

aNumber = Console.readInt ();
aString = Console.readString ();
aDouble = Console.readDouble ();
aChar = Console.readChar ();

The Console class is not standard Java. The listing of the class included at the
end of this section shows the standard Java that is implementing the class.

11. Defining a class
A class is defined in a .java file. The name of the class is defined, together with
its private and public sections.

public class Duck {
// Private Attributes
// Public Methods

}

Attributes are defined in the private section.

public class Duck {
private String name;
private int age;
private double value;
// public methods

}

Methods are defined in the public section. There must be a constructor and
there are usually selectors and mutators.

public class Duck {
private String name;
private int age;
private double value;

Java reference and examples 331



// Constructor

public Duck ()
{
}

// Selectors

public String getName ()
{
return name;

}

public int getAge ()
{
return age;

}

public double getValue ()
{
return value;

}

// Mutators

public void setName (String newName)
{
name = newName;

}

public void setAge (int newAge)
{
age = newAge;

}

public double setValue (double newValue)
{
value = newValue;

}
}
A special method called main may also be defined. This method is executed

by the JVM if it is told to execute the class.

public static void main (String args[])
{
// Any statements

}

12. Using a class
An instance of a class is declared by calling the constructor.

Duck elvis = new Duck ();

Methods are called by joining the identifier of the instance to the name of the
method with a full stop.

elvis.setName ("Elvis");
elvis.setAge (6);
System.out.println (elvis.getName () + " is" +

elvis.getAge ( ) );

13. Conditional statements – if
The basic if statement tests a condition and executes a statement only if the
condition is true.

332 How to program using Java



String aName;
int age;
bool finished;

if aName.equals ("Elvis") {
System.out.println ("The name is Elvis");

}

if (age > 10) {
System.out.println ("The age is greater than 10");

}

if (finished) {
System.out.println ("All finished!");

}

The optional else clause defines the statements to be executed if the condition
is false.

if aName.equals ("Elvis") {
System.out.println ("The name is Elvis");

}
else {
System.out.println ("The name is not Elvis");

}

if (age > 10) {
System.out.println ("The age is greater than 10");

}
else {
System.out.println ("The age is 10 or less");

}

if (finished) {
System.out.println ("All finished!");

}
else {
System.out.println ("Onward!");

}

More than one condition can be tested.

if (aName.equals ("Elvis") ) {
System.out.println ("The name is Elvis");

}
else if (aName.equals ("Buddy") ) {
System.out.println ("The name is Buddy");

}
else {
System.out.println ("The name is not Elvis or Buddy");

}

if (age > 10) {
System.out.println ("The age is greater than 10");

}
else if (age < 10) {
System.out.println ("The age is less than 10");

}
else {
System.out.println ("The age is 10");

}

Java reference and examples 333



14. Conditional statements – switch
The switch statement is a shorthand form of the if statement where the pos-
sible values for a variable can be listed and different statements are executed for
each value.

The variable must be of an ordinal type – integer or character.

char direction;

switch (direction) {
case 'n': System.out.println ("North");

break;
case 's': System.out.println ("South");

break;
case 'e': System.out.println ("East");

break;
case 'w': System.out.println ("West");

break;

}

The default case handles unexpected values.

switch (direction) {
case 'n': System.out.println ("North");

break;
case 's': System.out.println ("South");

break;
case 'e': System.out.println ("East");

break;
case 'w': System.out.println ("West");

break;
default: System.out.println ("Invalid direction!);

}

More than one value can be associated with a case.

switch (direction) {
case 'n':
case 'N': System.out.println ("North");

break;
case 's':
case 'S': System.out.println ("South");

break;
case 'e':
case 'E': System.out.println ("East");

break;
case 'w':
case 'W': System.out.println ("West");

break;
default: System.out.println ("Invalid direction!);

}

15. Loops – for loops
Afor loop is determinate. It executes a number of times that can be determined
before the first execution.

The loop is controlled by an initial statement, a continuation condition, and a
statement that is executed each time the loop runs.

334 How to program using Java



// Loop 10 times
for (int counter = 0; counter < 10; counter ++) {
System.out.println (counter);

}

// Loop 10 times, but backwards
for (int counter = 10; counter > 0; counter --) {
System.out.println (counter);

}

16. Loops – while loops
A while loop continues to execute while some condition is true. It is 
indeterminate.

while (!finished) {
// run the program

}

while (!finished && attempts < 10) {
// run the program

}

The value of the condition must change inside the loop, or the loop will never
terminate.

while (!finished) {
// run the program

if (answer == 'y') {
finished = true;

}
}

while (!finished && attempts < 10) {
// run the program

attempts ++;
}

If the condition is initially false the statements inside the loop are never
executed.

bool finished = true;
while (!finished) {
// never executed

}

17. Loops – do ... while loops
A do ... while loop executes while a condition is true. It is indeterminate.

do {
// run the program

} while (!finished);

The value of the condition must change inside the loop:
do {
// run the program

finished = answer == 'y';

} while (!finished);

The condition is tested after the statements inside the loop have been executed.
This means that the loop is always executed at least once.

bool finished = true;

Java reference and examples 335



do {
// executed once

} while (!finished);

18. Method prototypes
The first line of the definition of a method specifies its prototype. The prototype
of a method specifies the name of the method, the type of value returned by it,
and the types of its parameters. The types of the parameters are listed in
brackets, which are left empty if there are none.

public int getAge ()
public void setAge (int)
public double getValuePlusTax (float)

A method that does not return any value is defined to return void. It is called
a void method.

19. Method parameters – value parameters
Methods process values. These can be literal values or variables.

Duck elvis;
int age = 10;

elvis.setAge (10);
elvis.setAge (age);

Methods may alter the values passed to them but the changes are not made to
the variable in the calling program.

If a method has more than one parameter the values must be supplied in the
correct order.

public void printInColumns (int, char);
elvis.printInColumns ('#', 20); // wrong!
elvis.printInColumns (10, '*'); // correct

Values of the basic types – boolean, char, double, int – are passed by value.

20. Method parameters – reference parameters
Methods may also change values that are then available to the main program.
Values of object types (including strings) are passed by reference.

public void summon (Duck d)
{
int newX = getX ();
int newY = getY ();
d.moveTo (newX, newY);

}

elvis.setX (5);
elvis.setY (3);
buddy.setX (0);
buddy.setY (0);

elvis.summon (buddy); // buddy is moved to 5, 3

21. Static methods
Methods defined as static can be called without reference to an object of the
class.

public class Duck {

336 How to program using Java



public static void greet ()
{
System.out.println ("hello, world");

}
}
Duck.greet (); // Method call

22. Arrays
An array stores a collection of values of the same type. The type and the
number of values are specified in the declaration.

int numbers[];
numbers = new int[4];

int moreNumbers = new int[4];

Each value in the array is called an element and can be referenced by its index.
The first element is at index 0.

System.out.println ("First element: " + numbers[0]);
System.out.println ("Last Element: " + numbers[3]);

A common operation is to scan an array using a for loop to examine each
element in turn.

int highest = numbers[0];

for (count = 1; count < 4; count ++) {
if (numbers[count] > highest) {
highest = numbers[count];

}

}

23. Array lists
An array list is similar to an array. The main difference is that its size is not
fixed. An array list can store values of any object type. It is created in the same
way as any other object.
ArrayList myJobs = new ArrayList ();

An array list is an instance of a class. A value is added the add method.
myJobs.add ("Washing Up");

An element in a vector can be accessed using the get method. The elements are
indexed in the same way as an array, with the first element being at position 0.
System.out.println (myJobs.get (0));

The size method returns the number of elements in the array list.
System.out.print ("There are " + myJobs.size () );
System.out.println (" jobs to do");

The method removes an element. It can be used with the indexOf method to
remove a particular value.
myJobs (0);
myJobs (indexOf ("Washing Up"));

The whole list may also be emptied.
myJobs.clear ();

Java reference and examples 337



The Console class
/* Console.java – convenience class for reading user input

from the command line.

Author : GPH
Date : 17th July 2003
Tested on : Linux (Red Hat 9), JDK 1.4.2

*/

package htpuj; // states that this class is part of a package
import java.io.*; // for exceptions and reader objects
public class Console
{
// create a reader object that reads from command line
private static BufferedReader reader =

new BufferedReader (new InputStreamReader (System.in));

// read a String value from the console
public static String readString ()
{
String tmp = "";

try {
tmp = reader.readLine ();

}
catch (IOException ioe) {
ioe.printStackTrace ();

}
return tmp;

}

// read an int value from console
public static int readInt ()
{
int tmpInt = -99999999;

try {
tmpInt = Integer.parseInt (reader.readLine ());

}
catch (IOException ioe) {
ioe.printStackTrace ();

}

return tmpInt;
}

// read double value from console
public static double readDouble ()
{
double tmpDouble = -99999999.9;

try {
tmpDouble = Double.parseDouble (reader.readLine ());

}
catch (IOException ioe) {
ioe.printStackTrace ();

}
return tmpDouble;

}

// read char value from console
public static char readChar ()
{
char tmpChar = ' ';

338 How to program using Java



try {
tmpChar = reader.readLine().charAt (0);

}
catch (IOException ioe) {
ioe.printStackTrace ();

}
return tmpChar;

}
}

/* Notice how the single attribute and all the methods in this
class are declared static. This avoids the need to create a
Console object in every program that requires interactive
user input.

Possible modifications :
* The readChar method actually reads a String and returns

the first character – this could be made more robust by
checking that the String only has one character to start
with.

* The exception handlers produce very descriptive error
messages (possibly _too_ descriptive) – the
printStackTrace calls could just as easily be replaced by
custom error strings.

*/

Java reference and examples 339



340



Further reading and other resources 341

Since we’re now at the end of the book, the question rather arises of where to
go next.1 This section contains some ideas. Here you’ll find pointers to books
and web sites that should help you along the way as you learn more about 
programming and computing in general.

All the web sites in this section worked at the end of December 2003. The web
is a fast-changing place, and it is quite possible that by the time you read this
some of them will have disappeared or moved on. A good search engine should
help you find out where it’s one. If you find a web site that’s not working, you
can email me at tony@tony-jenkins.co.uk, especially if you’ve also found
a decent replacement! All the web sites are also linked from this book’s web site,
together with any changes.

Most people’s search engine of choice these days seems to be Google at
http://www.google.com/, not least because it’s refreshingly advertise-
ment-free. That’s the one I used to find the sites in this section …

Other useful search engines are:

AltaVista http://www.altavista.com/
Excite http://www.excite.com/
Lycos http://www.lycos.com/
Yahoo http://www.yahoo.com/

More about Java
The best place to start if you want to learn more about the Java language is
probably the main page maintained by Sun:

http://java.sun.com/

You should be used to using the API documentation available from here by
now, but there’s also plenty of interesting information on the history of Java and
plans for the future. The collection of tutorials:

http://developer.java.sun.com/developer/onlineTraining/

will also provide an introduction to some of the other parts of Java that you
might want to go on to explore now.

There are many other Java books. The best way to choose the one that’s best
for you is to spend some time in a shop leafing through them.

You will have gathered by now that I’m quite keen on things that are free.
Happily, there are free books on Java. The most widely used of these is probably
Bruce Eckel’s Thinking in Java; the third edition of this is available in an
electronic form at:

http://www.mindview.net/Books/TIJ/

This book is also available in other programming languages. The C��
version would be a good place to start if you want to learn something of that
language.

1 You may well fancy the pub, a nice café, Hawaii, or Basingstoke, but I’m talking Java here.



342 How to program using Java

Famous people
The names of a few other famous people in the history of computing have been
used in some of the examples. These are some people that you really should
know something about:

Charles The “Grandfather of Computing”. Built (or more accurately
Babbage attempted to build) the first mechanical devices that shared many of

the characteristics of modern computers. http://ei.cs.vt.edu/
~history/Babbage.html

Grace A pioneer of programming and compilers. Curiously made the
Hopper first computing Man of the Year award in 1969.

http://www.sdsc.edu/ScienceWomen/hopper.html
Ada Generally thought of as the first computer programmer,
Lovelace although she lived long before anything that we might recognise

now as a computer was built.
http://www.sdsc.edu/ScienceWomen/lovelace.html

John von A pioneer in computer architecture – the von Neumann
Neumann Architecture.

http://ei.cs.vt.edu/~history/VonNeumann.html
Linus The man behind the free Linux operating system. A famous
Torvalds Finn.

http://www.tuxedo.org/~esr/faqs/linus/
Alan A founder of artificial intelligence, probably now most famous
Turing for his work at Bletchley Park in the Second World War.

http://www.turing.org/
Maurice Developed many fundamental aspects of computer hardware
Wilkes and programming.

http://ei.cs.vt.edu/~history/Wilkes.html

As usual, a decent search engine will turn up many more pages of information
about these people.

There are also many sites offering information about more famous people
and more about the history of computing in general. The site at Virginia Tech is
a good starting point if you want to find out more:

http://ei.cs.vt.edu/~history/

Readers’ choice
That’s it for further reading.

If you want more, you’ll have to send it to me. On the book’s web site you’ll
find a form to submit your favourite, useful, related-to-programming-in-some-
vague-sort-of-way web site. Send it to me and I’ll add it to the links. Your
chance to get a little bit of fame!

Software
This section describes how to get hold of all the software you need to get started
writing Java. The best part is that all the software described here is completely
free!

All the software in this section can be downloaded free of charge from the
web. If this causes a problem, you can get it all on a set of CDs as part of the



Further reading and other resources 343

excellent Brighton University Resource Kit for Students (BURKS). Details of
BURKS are at:

http://burks.bton.ac.uk/

BURKS includes a very large collection of software and other useful stuff,
including a full distribution of Linux, a free version of the Unix operating sys-
tem. The web site also contains a mirror of the contents of the CD, so you can
download everything from there too. If you choose to buy the CD, please be
sure to tell John that I sent you.

Most of the Linux versions of this software will also be provided as a stan-
dard part of one of the many distributions of Linux. Links to the web sites of
the providers of all of these distributions are maintained at:

http://www.linux.org/

A good place to find out more about free software is the home page of the
Free Software Foundation:

http://www.fsf.org/

Of course, a computer needs an operating system. Most free software is, very
reasonably, written for free operating systems. In practice this means that most
free software is written for Linux, and other free versions of the Unix operating
system. Do not panic if you’re a user of a less free operating system such as
Microsoft Windows; there are usually versions available for these too (although
sometimes they’re not the latest version).

You can find links to all this free software on the web site. You’ll also find a
form to tell me about any other useful software for Java programming that you
might find so that I can add it to the list.

Compilers
The first thing that you need is obviously a compiler and a JVM. This is easy
enough to get hold of from the usual place:

http://java.sun.com/

The latest versions of everything you need can be downloaded from here.

Editors
Now for something to edit the source code with. In the Unix world the most
popular editor is vi. A fine version of this is Vim, available for a vast range of
operating systems (including Microsoft Windows) at:

http://www.vim.org/

New programmers often find the windows-based version of Vim (called gvim)
especially useful. Vim has many features that make programming easier; it will
highlight different statements in helpful colours, and it will take care of inden-
tation automatically. All the programs in this book were written using either
Vim or gvim.

Vim is not strictly speaking free software. It is charityware. If you download
Vim and find it useful you are invited to make a donation to help needy 
children in Uganda.

A popular editor for Windows platforms is the Programmer’s File Editor
(PFE). Development of PFE has now been discontinued, but the last version can



344 How to program using Java

still be found:

http://www.lancs.ac.uk/people/cpaap/pfe/

If you fancy something a little more sophisticated for your programming,
you could try out an IDE. BlueJ is an IDE designed specifically for new pro-
grammers. It comes with a set of example programs and can be downloaded
from:

http://www.bluej.org/

You can also download all the necessary Java system files from the BlueJ site.

This book
The programs for this book were developed using standard Java from a
command line interface. The source code was created using Vim. All this
happened using various versions of the Red Hat distribution of the Linux
operating system.

The words you are reading now were typed using Microsoft Word 2000,
running on Microsoft Windows 2000.

Getting the programs into and out of Word was a nightmare. It is not
something that I would recommend. And this is the second time …



345



346 How to program using Java

C��, C#, and Python
It’s quite likely that you will soon want to move on to programming in 
another language. The principles that you have learned with Java should see
you well placed to go on to program in other languages – the obvious candi-
dates are two other object-oriented programming languages, C�� and C#.

This section also points you in the right direction to find out more about 
programming languages in general. In particular, Python is an interesting new
language that is well worth a look.

C��
We’ve mentioned C�� a few times in this book, and we’ve also considered
some of the differences between Java and C��. The main difference is that 
Java is seen by many to be more “pure” while C�� is more like a non-object-
oriented language (C) with object-oriented features added.

With experience in Java, you should be able to recognise what simple C��
programs are doing. Much of the syntax is very similar; the designers of Java
had obviously seen C��, and it made sense to keep some of the syntax identi-
cal. Here’s the traditional first program in Java:

// hello.cc
//
// The traditional first C++ Program.
//
// AMJ 15/9/2003

#include <iostream>

using namespace std;

int main ()
{
cout << "hello, world" << endl;

return 0;
}

You can see that a C�� program does not have to use a class. But then some of
the keywords used in Java are the same as those in C��, and you can proba-
bly take an educated guess at what’s going on here.

The traditional second program written in C�� starts to show where the 
two languages are different, but there should still be plenty here that you can
recognise or at least guess at the purpose of.

// hello.cc
//
// The traditional first C++ Program.
//
// AMJ 15/9/2003

#include <iostream>
#include <string>

using namespace std;

int main ()
{
string name;

cout << "Enter your name: ";



C++, C# and Python 347

cin >> name;

cout << "hello," << name << endl;
return 0;

}

C�� was a development of the C language, and both these languages are to
some extent ancestors of Java. You can read more about C�� at the home page
of its inventor, Bjarne Stroustrup:

http://www.research.att.com/~bs/

The home pages of Brian Kernigham and Dennis Ritchie provide a good bit
of history of the development of C. The contribution of these two (K and R, as
they are generally known) is hard to overstate. Both K and R work at Bell Labs
in New Jersey and their pages are:

http://www.cs.bell-labs.com/who/dmr/
http://www.cs.bell-labs.com/who/bwk/

C#
You might also have heard of C# (pronounced C-sharp). C# is closely related to
C�� and Java, and is worthy of quick mention here. C# is a proprietary prod-
uct of Microsoft; it is the programming language associated with Microsoft’s
.NET initiative. Like Microsoft’s other visual programming languages, C# 
is written using a complete IDE (you have probably seen or used tools such as
Access or Visual BASIC).

C# is quite a controversial topic. Some have argued that it is simply
Microsoft’s attempt to compete with Java; Microsoft obviously has a propri-
etary operating system and could be expected to be worried by a language that
would run on many different systems. Some have gone further and suggested
that C# is little more than a copy of Java made specific for the Microsoft plat-
form. Others, on the other hand, state that the emergence of C# and Java at
roughly the same time is little more than coincidence. There are plenty of
people who will argue for each of these.

You can make your own mind up. Microsoft’s own site contains all you could
need to know about C#, as well as handy pointers on where to buy it:

http://msdn.microsoft.com/vcsharp/

A search on any web search engine will lead you to many of the arguments!

Python
A final language worth a mention in its own right is Python. Python is, like Java,
a platform-independent language and implementations of Python are free. You
can find out all about it and download a copy at the Python web site:

http://www.python.org/

In particular the Beginners’ Guide at:

http://www.python.org/doc/Newbies.html

will help you on your way to learning some Python. There is also an excellent free
book by Jeff Elkner and others describing all the Python you might need available:

http://www.ibiblio.org/obp/thinkCSpy/



348 How to program using Java

and an equally excellent free tutorial by Alan Gauld here:

http://www.freenetpages.co.uk/hp/alan.gauld/

Python differs from Java and C�� in that it is a scripting language. This means
that Python programs are not compiled, but are interpreted as they are executed.
Python programs can also be written interactively.

Python is quite a new language, but it is gaining in use. A particular attrac-
tion is that, since it is interpreted, it is especially suitable for developing quick
prototypes of programs before they are rewritten in another language. Many
recent applications have used Python, including the Google search engine and
several feature films.

The history of Python is described on the home page of the author, Guido van
Rossum:

http://www.python.org/~guido/

Other languages
Computer programming languages are rather fascinating things. They have
developed a complex family tree, even though they’ve only been around for a
relatively short time. If you want to find out more about them, a good start is
Éric Lévénez’s excellent programming language page:

http://www.levenez.com/lang/

Equally fascinating is the splendid “Bottles of Beer” page at:

http://99-bottles-of-beer.ls-la.net/

where you can find programs to generate the lyrics to a well-known song in (as
at December 2003) 598 different programming languages. That’s 170 new
languages in the last year!



349

Glossary
accessor A method which can inspect the value of an attribute but not alter it. Also

called a selector.
algorithm A group of operations which perform a certain task (such as sorting).

May be written in a particular programming language, or pseudocode.
Application Programming Interface (API) The list of public methods and attributes

describing, for the benefit of a programmer, how a particular package or language
can be used. Usually provided in the form of vast amounts of documentation.

argument See parameter.
array A structure for storing a fixed number of values of the same type.
array list A structure, similar to an array that can hold a variable number of values

of some type. See also vector.
assignment operator �, the operator used in an assignment statement. Not the

same as ��, which is the comparison operator.
assignment statement A statement where a value is assigned to a variable.
attribute A value corresponding to a feature of an object type, which is of interest in

the real-world problem we are trying to represent. An example would be the
“name” attribute of a “person” object.

backslash The “\” character, found between the left-hand shift key and the Z key
on the UK keyboard.

base class A class from which derived classes inherit attributes and methods.
beta testing The testing of a program at an advanced stage of development, in order

to find bugs which would only become apparent through “real” usage.
black box testing A form of testing where the actual implementation of the program

is unknown.
body A collective name for the statements inside a method.
Boolean expression An expression which can be evaluated to one of true or false.
Boolean operator An operator used to make or compare Boolean expressions.
Boolean value A value which can be evaluated to either true or false.
boundary case (or boundary condition) In testing, a type of test case which tests the

range of values containing a change from acceptable to unacceptable.
braces See curly brackets.
Bubblesort A simple sorting algorithm commonly used for teaching purposes.
bug Unintended or undocumented behaviour in a program. Usually a bad thing,

and almost always discovered by a user.
bytecode Generated by a compiler from source code, and executed by an interpreter.

Java bytecode is found in files with the .class extension.
call Both a noun and a verb. See method call.
calling method A method which calls another method.
calling program A program which calls a method.
cast A way of converting a value from one type (usually a numeric type) to another.
CLAs See command line argument.
class See also object type.
.class file See also bytecode.
classpath A list of locations the Java compiler and/or interpreter will search for

packages imported into classes or programs.
code See also source code.
code reuse The ability to use code developed to solve one problem as part of a solu-

tion to another.
code walkthrough The process of going through a program’s source code a line or

block at a time, in order to explain its operation to another person.



350 How to program using Java

command line argument A value provided as input to a program when it is run,
via the command line.

comment A piece of code which is ignored by a compiler, but useful for providing
information to programmers.

compilation The process of translating source code into an executable form.
compiler A program which performs compilation.
concatenate To tag one value onto the end of another. For example, concatenating

the strings “Z” and “Cars” produces another string, “Z Cars”.
condition An assertion which is either true or false. Used in conditional statements to

control the flow of a program.
conditional statement A statement which evaluates a condition or set of conditions,

and based on the result of this evaluation, passes control to various different
parts of a program.

constant An entity whose value will never change during the life of a program. Has
a type, and is referred to via an identifier.

constructor A special method which is used to instantiate an object of a given class.
Must be declared public.

control statement A statement which controls the execution path of a program.
control variable A variable used in a control statement which may affect the execution

path.
curly brackets (or curly braces) The symbols { and } which signify the start and end

of a block of statements in Java. Not to be confused with parentheses – ( and ).
data hiding The process of writing a class in such a way that the programmer need

have no knowledge of the attributes used in its implementation.
data type The sort of value which can be stored in a given attribute or variable.

Examples are integers, strings, arrays, and floating-point numbers.
debugger Program used to aid debugging.
debugging The process of systematically discovering and eliminating bugs in

a program. Programs to help in this process are known as debuggers.
declaration A statement which introduces a method, constant, or variable into a 

program or class.
decrement To reduce the value of an integer variable by one.
derived class A class which inherits attributes and/or methods from a base class.
determinate loop A control loop which executes a predefined number of times. 

The eventual number of iterations is known at the time of the first iteration.
directory The Unix and MSDOS equivalent of a folder on an MS Windows system.
driver A program written especially to test a class.
dry run Simulating the execution of a program with pencil and paper.
editor A program used to create and alter source code.
element A value in an array or vector, accessible via its unique index.
exception An unexpected run-time error in a Java program.
executable A version of a program which can be run by a computer.
execution path The order of statements executed during the lifetime of a program.

Each different execution path will cause the program to produce different results.
expression A combination of literal values, operators, and variables.
extension (or file extension) The part at the end of a filename (usually following

the last dot) which is used by some programs and operating systems in an attempt
to determine the file format.

flag A special command line argument, usually denoted by a / in DOS or – in Unix.
floating-point number A number which includes a decimal part.
flow (of control) The sequence of statements executed in a program’s lifetime.

Affected by control statements and conditional statements.
folder A set of files grouped together into one logical unit.
function A procedure for achieving some result, usually corresponding to a method.
hard copy Source code printed onto paper. Useful for testing purposes and code

walkthroughs.



header block (or history block) Comments found at the top of a source code file,
containing information about who wrote the class or program and when, plus 
any important changes made to the code, and usually a short description of its
purpose.

high level programming Programming in a language such as Java, using a high
level language that is easy for humans to understand.

identifier The name used to uniquely identify a variable within a program.
increment To increase the value of an integer variable by one.
indentation Use of whitespace to make source code easier for a programmer to read.
indeterminate loop A control loop which executes until a given condition is satisfied.

The eventual number of iterations through the loop cannot necessarily be deter-
mined at the time of the first iteration.

index A variable’s position within a string, array or vector.
infinite loop A loop whose exit condition can never be satisfied, and therefore 

executes forever. This is almost always programmer error.
initialiser list A list of values used to initialise an array.
instantiation The process of creating an object or variable of a certain type.
integer A number with no decimal part.
interactive (or integrated) development environment (IDE) A piece of software

which combines an editor and compiler (and usually a debugger) to aid in the rapid
development of programs.

interface The specification of a class’s methods, indicating how a programmer can use
that class in a program.

interpreter Reads bytecode and instructs the computer to perform some tasks.
iterate To repeat a process until some condition is met. To process every element of

an array in turn, for example.
jar file (or jar archive) A sort of file containing a package or a group of packages,

bundled together for convenience.
.java file Text file containing the source code for Java classes or programs.
Java Development Kit (JDK) A software bundle containing a Java compiler, inter-

preter, debugger, and other assorted tools, plus a whole host of predefined classes,
and usually copious amounts of API and tutorial documentation. Sometimes
referred to as the SDK (Software Developers’ Kit).

Java Virtual Machine (JVM) An interpreter for the Java programming language.
library A group of classes provided by other programmers, offering useful function-

ality. The Java term for this is a package.
list A structure, an array list, for example, used for holding a collection of related

objects.
listing See hard copy.
literal value A simple value used in an assignment. For example, any string value,

or 1, or 3.142, or the character “c”.
local variable A variable created within a method, which only exists for the lifetime

of that method.
loop A block of statements executed repeatedly. The number of executions is con-

trolled by a control statement.
low level programming Programming at the machine level, perhaps using 

switches and levers.
method A block of code which corresponds to a particular task in the real-world

problem we are trying to represent. An example would be a code to alter the
name of a “person” object.

method call A statement which causes a method to be executed.
methodology A particular way of carrying out a task. In programming terms, this

could be a way of analysing a problem, or a way of testing a class.
modulus The remainder operator, represented as %.
mutator A method which is used to alter the value of an attribute of an object.

Glossary 351



numeric type A primitive variable type representing a mathematical quantity.
Examples are integers and floating-point numbers.

object An entity representing a particular instance of a class, which can be manipu-
lated by a program.

object-oriented programming A style of programming which relies on descrip-
tions of objects to represent a problem area.

object type Refers to a group of objects which possess the same characteristics
within a problem area.

operating system (OS) The program (or collection of programs) which provides 
the interface between user and computer. Common examples are Linux, MS
Windows, and Mac OS.

operator A symbol used to build expressions along with identifiers and literals. For
example, /, *, �, and � are mathematical operators, while !, &&, and || are
Boolean operators.

operator precedence The order in which operators are treated within a calculation
or comparison.

ordinal type A data type, the possible values of which can be listed.
package The Java term for a library.
parameter A value provided to a method by its calling method. Found within paren-

theses in a method call.
parentheses The symbols ( and ).
portable Property of a program which can be copied across different computers and

operating systems, and compiled and run with little or no alteration required.
precedence See operator precedence.
primitive type One of the basic built in types such as int, char, double, boolean,

as opposed to object types.
private A kind of attribute or method which cannot be accessed directly by any code

outside of the class in which it is defined.
procedural language A programming language, like Java, that specifies a procedure

that will solve a problem; some other languages can be described as functional.
program A set of statements which, together, perform some task.
programmer A skilled craftsperson who develops programs. The term is not neces-

sarily interchangeable with software engineer.
programming language A specialised language used by a programmer to express an

algorithm to a computer.
prompt A message displayed by a program indicating that user input is required.
prototype A name sometimes used for the heading of a method declaration.
pseudocode A representation of an algorithm which is not written in any parti-

cular computer language. It usually consists of more human-oriented language
rather than computer-oriented, and is written in such a way as to be clear and
unambiguous.

public A kind of attribute or method which can be accessed directly by code outside
of the class in which it is defined.

recursion See recursion.
reference Property of a parameter, for example, where the parameter represents not

a particular value (such as “1878”), but a particular object (for example, the duck
“Elvis”).

return The last stage in the execution of a method, where the flow of control reverts to
the calling method. Sometimes involves a return value being provided to the calling
method.

return type The data type of the value returned by a method.
return value The value passed from a returning method to its calling method.
scope Of a method or attribute, whether the method or attribute is public or private.
selector See accessor.
Software Development Kit (SDK) See JDK.

352 How to program using Java



software engineer Skilled craftsperson who engages in software engineering. Not
necessarily interchangeable with the term programmer.

software engineering The process of creating working software, including pro-
gramming, testing, evaluation and documentation.

sorting algorithm An algorithm used to sort a collection of values into some order,
determined by some rules (for example, sorting a list of names into alphabetical
order).

source code A sequence of characters which are meaningful to both a programmer
and a compiler.

statement A line of code which performs some task within a class.
static A method or attribute of a class which does not require an object of that class in

order to be used.
string A data type representing a sequence of characters.
style The way in which a programmer lays out the source code of a program. Relies on

indentation, and it is important that this is consistent.
test case (or test condition) A set of input values and their corresponding output

values, used as part of a test plan to evaluate the correctness of a program.
tester A person, usually a programmer or a close associate, who applies a test plan to

a program.
test harness A program used to test the implementation of a class.
test plan A set of test cases which, if all satisfied, provides sufficient evidence that 

a program will work as intended.
transaction Something that happens in a problem that changes some value; 

usually corresponding to a method.
truth table A visual representation used to show all the possible outcomes of 

a Boolean expression.
type See data type.
typical value A test case representing a (usually random) value which may be 

provided to a program by a user during the course of normal execution.
user Person who utilises a program written by a skilled programmer, and invariably

discovers unexpected ways to break it. Very good at uncovering bugs.
variable A value which may change during the lifetime of a program.
variable declaration A statement where a variable is created. Includes the variable’s

type and identifier, and optionally an initial value.
vector Similar to an array, but can grow and shrink during the lifetime of a program.

See also array list.
void method A method which does not return a value to its calling method.
white box testing A process of testing a program, involving examining its source code.
whitespace Spaces, tab characters, and newlines, used to make source code easier to

read. See indentation.

Glossary 353



354



// (comment delimiter) 69, 80, 137
/* and */ (comment delimiters) 69, 80, 88,

137
� (assignment operator) 89, 157, 330

confusion with �� 183, 209–211
! � (Boolean “not-equal” operator) 183,

185, 195, 197
�� (Boolean equivalence operator) 183,

185, 187, 191, 192
� (addition operator) 94–95, 330
�� (increment operator) 95, 330
�� (“add to” operator) 96, 330
� (string concatenation operator) 94–95
– (subtraction operator) 94–95, 163, 330
–– (decrement operator) 96, 330
– � (“subtract from” operator) 96, 330
* (multiplication operator) 94–95, 330
* � (“multiply by” operator) 96, 330
/ (division operator) 94–95, 194, 330
/ � (“divide by” operator) 96, 330
% (modulus operator) 97, 108
() (parentheses) 95, 100
() (casting) 96, 97
� (greater-than operator) 163, 183, 186
� (less-than operator) 183, 186
�� (greater-than-or-equal-to operator)

183, 188
�� (less-than-or-equal-to operator) 183,

188, 195
! (“bang”, Boolean “not” operator) 182
&& (Boolean “and” operator) 182, 186, 188
|| (Boolean “or” operator”) 182, 187, 194

.class file 24, 25, 73, 155

.java file 22, 69, 136, 155

accessor (method) 141, 168, 169–171
adventure games 30
Algol 15
algorithm 14
analysis 5, 53–62,
Analytical Engine 14
and (Boolean operator) 182

see also “&&”
API (Application Programming Interface) 33

documentation for Java 243

appending 100
see also “� (string concatenation operator)”

argument 68, 102, 139, 156, 336
array 8, 115, 237, 238–242, 250, 337
.length attribute 240

ArrayIndexOutOfBoundsException
239, 251

ArrayList (class) 237, 243–247, 273, 337
accessing elements of 246–247, 275–277,

278, 337
adding elements to 244, 253, 273, 

278, 337
creating 243–244
deleting elements from 245, 254, 274–275,

337
finding size of 244, 254
modifying elements of 245, 279–280

array list see “list”
assignment (operation) 89, 92–93

see also “�”
attribute 5, 40, 41, 43, 101, 136, 138

defining 140–141, 329
identifying 57, 264–265

B (programming language) 16
Babbage, Charles 14
base class 319
BASIC (programming language)

15, 36, 94
BCPL (programming language) 15
beta testing see “testing, beta”
BlueJ 33
Boolean

condition 201
expression 182
value 42, 181, 201
variable 181

boolean (type) 90, 92, 181
boundary value see “test plan, boundary

value”
brace (‘{‘ and ‘}’ characters) 68, 89
break (keyword) 188, 334
BubbleSort (sorting algorithm) 249–251
BufferedReader (class) 313, 314, 318
close method 314, 318
readLine method 314, 318

Entries in monospaced font are legitimate Java terms, while entries in italicised
monospaced font are Java terms which, although used in this book, are not part of the 
standard API. Page numbers in bold type are those especially recommended for that particu-
lar topic.



356 Index

BufferedWriter (class) 313, 314
close method 315, 317
flush method 315, 317
write method 315, 317

bug 14
bytecode 24, 25

see also “.class file”

C (programming language) 16, 36, 46, 89,
116

C �� (programming language) 16, 40, 44,
46, 89, 116

C# (programming language) 40, 46
cake, chocolate 13
call (method) 154, 156–157
call-by-reference 223–225
call-by-value 223–224
calling method 102
calling program 154
case (keyword) 187–188, 334
case study 262–293
casting 96, 246, 266
catch (exception handling) 312, 317
char (type) 90, 92, 189
character 42
class 6, 41, 70–72, 136, 153–166

defining 69, 263–265, 331
implementing 136–151
testing 300–301

classpath 34
COBOL (programming language) 15
code re-use 40, 51
collection 8, 237–260

as argument in method call 247–248
command line argument (CLA) 113
comment 69, 80, 83, 88, 328–329
compiler 21, 23

errors 24
compilation 21, 23–26
condition 7, 179
conditional statement 7, 179–201
Console (custom class) 34, 118, 338–339
readChar method 214, 331
readDouble method 214, 331
readInt method 122, 161, 331
readString method 161, 274, 316, 331

constant 98, 108, 329
constructor 71, 101, 142–143, 155–156, 169,

240
control variable 205
Croft, Lara 30

data hiding 7, 154, 168–177
debugger 25
debugging 130–131
declaration 65

default (keyword) 188, 334
derived class 319
design, program 5
Difference Engine 14
digestive, chocolate 2
dir (DOS command) 114
do...while (loop construct) 209, 217, 233,

258, 280, 283, 335–336
double (type) 66, 90, 96
dragon, fire-breathing 30
driver program (testing) 255–257, 271–272,

300
dry run 303

element (of list) 238
else (conditional statement) 163, 185–187,

194, 333
ending a program 190
entity 41
exception 311–312
executable 23
expression 93
extends (keyword) 320

false (Boolean value) 181, 201
file extension 22, 114
file I/O (input and output) 313–319
FileReader (class) 314, 318
FileWriter (class) 314
final (keyword) 98, 194
floating-point 42
flow of control 211
for loop 204–207, 212, 213, 244, 250, 277,

317, 334–335
FORTRAN (programming language) 15
function 41

get method see “accessor”
getting help 34
golden rules (of programming) 77–82, 85
Gosling, James 16
Graphical User Interface (GUI) 322–324

header block 70, 88, 137
Hopper, Grace 18
house style 79

IDE (Integrated Development Environment)
23

identifier 89, 90, 91–92
if (conditional statement) 163, 179,

184–187, 194, 332–333
import (keyword) 118, 121, 243
incrementing 94
indentation 79–82
inheritance 319–320



initialiser list (array) 241, 250
input 6, 113–123

interactive 114, 117–119
via command-line arguments 113–117

instance 41
int (type) 65, 90, 92, 96, 120
integer 42
Integer.parseInt (utility method) 120,

318
interface (of class) 7, 140, 154
IOException (class) 313, 317

jar archive 34
JOptionPane (class) 323
JVM (Java Virtual Machine) 16, 25, 26

Kernighan, Brian 16

library, system 21
LISP (programming language) 15
list 8, 89, 115, 237
literal value 93
Local Guide 22, 33, 80
login (Unix program) 114
loop 8, 203–220

determinate 206
indeterminate 207
infinite 208

Lovelace, Ada 14

main method 88, 102, 136, 332
method 5, 40, 41, 44, 51, 67–69, 101, 137,

138–139, 222–235
as argument of another method 225–226
defining 141–142, 336
designing 59–60, 265
identifying 57, 265
implementing 143–144
main see “main method”

methodology (analysis & design) 54
MIT (Massachusetts Institute of Technology)

15
mutator (method) 98, 168, 169, 171

not (Boolean operator) 183
see also “!”

null value 94
null (keyword) 323
NumberFormatException 311

object 4, 40, 100–101, 136
declaring 155–156
identifying 54–57

object-oriented 5, 40
programming 16, 46

object type see “type”

operating system 13
operator precedence 94–95
or (Boolean operator) 182

see also “||”
output 99–100
overloading methods 320–322

package (keyword) 25
parameter see “argument”
Pascal (programming language) 17, 38
Plankalkul (programming language) 15
portable 15, 40
PrintWriter (class) 315
private (scope) 67, 101, 139, 154
program 12

designing 60
programmer 12
programming basics 87–108
programming language 2
programming languages see also Algol, B,

BASIC, BCPL, C, C �� , C#, COBOL,
FORTRAN, LISP, Pascal, Plankalkul,
Python, Simula

protected (scope) 139
prototype (of method) 222–223
pseudocode 59, 180, 274, 278
public (scope) 67, 68, 88, 139, 154
Python (programming language) 17, 40

quotation marks (‘ and “) 90

recursion see “recursion”
reference (memory) 191
reference parameter 225, 229, 336
return (statement) 89
return type 44, 45, 139
return value 44, 45, 157
re-use, code see “code re-use”
Richards, Martin 15
Ritchie, Dennis 16

scope 138
see also “public, private, protected”

selector method see also “accessor”
semi-colon 66, 77, 92
set method see “mutator”
Simula (programming language) 15
software engineering 125
sorting 248–252
source code 26, 88

see also “.java file”
static (keyword) 88, 222, 225, 226–227,

336–337
statement 65, 66, 87
string 42

making comparisons 191

Index 357



358 Index

String (type) 65, 90, 92, 99, 101
equals method 192, 201
equalsIgnoreCase method 192

Stroustrup, Bjarne 16, 46
style (programming) 77–79
Sun Microsystems 16
switch (conditional statement) 179,

187–190, 258–259, 279, 283, 316, 334
systems analyst 53
System.err (standard error stream) 280
System.exit (static method) 190, 201
System.out.print (static method) 1,

195, 331
System.out.println (static method)

99, 331

test case 6, 127, 128
test data 127
test harness 300
test plan 6, 125, 127–129, 295

boundary value 129, 133
typical value 129, 132

testing 6, 125–134, 255–257, 271–272, 295–308
beta 131
black-box 296–298
comparison of black- and white-box 299
importance of 125, 126, 131–132
white-box 299

throws (exception handling) 312
true (Boolean value) 181, 201
truth table 182
try block (exception handling) 312, 317
Turing, Alan 18
type 41, 42, 72, 90, 93, 136, 329
typical value see “test plan, typical value”

value parameter 336
vector (data structure) 237
void (return type) 44, 67–68, 89, 139
variable 6, 87, 329

declaration 89, 90, 94
initialisation 94

while (loop construct) 207–208,
215, 335

wrapper classes for primitive types
246–247

Zuse, Konrad 15

The following is a list of classes which are
fully listed in the text :

ArrayDemo.java 239–240
BirdCalculator.java 105
Borrower.java 146, 172–173
BusConductor.java 320
Calculator.java 216–217
CLASign.java 117
CLATest.java 115–116
Coot.java 162–163
CootComparator.java 164
CricketingDucks.java 148–150
CricketScheduler.java 108, 126–127,

193–196
CricketScheduler2.java 121–122
Duck.java 71–72, 80, 144–145, 

159–160, 173–174, 231–232, 
268–271

DuckDatabase.java 285–291
DuckTracker.java 161–162
DuckTrafficControl.java

232–233
First.java 87–88
Hello.java 99
InteractiveSign.java 118–119
MangledDuck.java 81
MoneyTracker.java 106–107
Numbers.java 320–321
Person.java 319–320
PieShare.java 305–306
ReadTest.java 118
Sign.java 101–103, 323–324
Sign3.java 196–198
TimesTable1.java 120
WordStats.java 302–303


	1403912238
	Contents
	To the Student
	To the Teacher
	The web site of the book
	About the authors
	Acknowledgements

	Chapter 0 – What this book is
	Chapter 1 – Programming
	Chapter 2 – The mechanics
	Chapter 3 – Before you start
	Chapter 4 – Objects. The building block
	Chapter 5 – A word on analysis and design
	Chapter 6 – A first look
	Chapter 7 – Programming (don’t panic!)
	Chapter 8 – The basics
	Chapter 9 – Input
	Chapter 10 – A word on testing
	Chapter 11 – A first class
	Chapter 12 – Classes and objects
	Chapter 13 – Get your hands off my data!
	Chapter 14 – Making things happen. Sometimes
	Chapter 15 – Making things happen. Again and again
	Chapter 16 – More methods
	Chapter 17 – Collections
	Chapter 18 – A case study
	Chapter 19 – More on testing
	Chapter 20 – Onward!
	Java Reference & Examples
	Further Reading, Web Sites and Other Resources
	C++, C# & Python
	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Z




